Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the problem, we need to determine the correct equation that shows the variance for the number of miles Fiona biked last week.
Given data:
Recorded miles: [tex]\(4, 7, 4, 10, 5\)[/tex]
Mean ([tex]\(\mu\)[/tex]): 6
The formula for the population variance ([tex]\(\sigma^2\)[/tex]) is:
[tex]\[ \sigma^2 = \frac{1}{N}\sum_{i=1}^{N} (x_i - \mu)^2 \][/tex]
where [tex]\(N\)[/tex] is the number of data points, [tex]\(x_i\)[/tex] represents each data point, and [tex]\(\mu\)[/tex] is the mean.
In this case:
1. Calculate the squared differences from the mean for each data point:
[tex]\[ (4-6)^2, (7-6)^2, (4-6)^2, (10-6)^2, (5-6)^2 \][/tex]
[tex]\[ 4, 1, 4, 16, 1 \][/tex]
2. Sum these squared differences:
[tex]\[ 4 + 1 + 4 + 16 + 1 = 26 \][/tex]
3. Divide by the number of data points ([tex]\(N = 5\)[/tex]) to get the variance ([tex]\(\sigma^2\)[/tex]):
[tex]\[ \sigma^2 = \frac{26}{5} = 5.2 \][/tex]
Given the choices, the only correct formula for the population variance [tex]\(\sigma^2\)[/tex] is:
[tex]\[ \sigma^2 = \frac{(4-6)^2 + (7-6)^2 + (4-6)^2 + (10-6)^2 + (5-6)^2}{5} \][/tex]
Therefore, the correct equation showing the variance for the number of miles Fiona biked last week is:
\[
\sigma^2 = \frac{(4-6)^2 + (7-6)^2 + (4-6)^2 + (10-6)^2 + (5-6)^2}{5}
Given data:
Recorded miles: [tex]\(4, 7, 4, 10, 5\)[/tex]
Mean ([tex]\(\mu\)[/tex]): 6
The formula for the population variance ([tex]\(\sigma^2\)[/tex]) is:
[tex]\[ \sigma^2 = \frac{1}{N}\sum_{i=1}^{N} (x_i - \mu)^2 \][/tex]
where [tex]\(N\)[/tex] is the number of data points, [tex]\(x_i\)[/tex] represents each data point, and [tex]\(\mu\)[/tex] is the mean.
In this case:
1. Calculate the squared differences from the mean for each data point:
[tex]\[ (4-6)^2, (7-6)^2, (4-6)^2, (10-6)^2, (5-6)^2 \][/tex]
[tex]\[ 4, 1, 4, 16, 1 \][/tex]
2. Sum these squared differences:
[tex]\[ 4 + 1 + 4 + 16 + 1 = 26 \][/tex]
3. Divide by the number of data points ([tex]\(N = 5\)[/tex]) to get the variance ([tex]\(\sigma^2\)[/tex]):
[tex]\[ \sigma^2 = \frac{26}{5} = 5.2 \][/tex]
Given the choices, the only correct formula for the population variance [tex]\(\sigma^2\)[/tex] is:
[tex]\[ \sigma^2 = \frac{(4-6)^2 + (7-6)^2 + (4-6)^2 + (10-6)^2 + (5-6)^2}{5} \][/tex]
Therefore, the correct equation showing the variance for the number of miles Fiona biked last week is:
\[
\sigma^2 = \frac{(4-6)^2 + (7-6)^2 + (4-6)^2 + (10-6)^2 + (5-6)^2}{5}
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.