Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the value of [tex]\( h \)[/tex] that will ensure the equation:
[tex]\[ h(-2x + 2) = -8(x - 8) \][/tex]
has a single unique solution, we need to ensure that the coefficient of [tex]\( x \)[/tex] on both sides of the equation are equal.
1. Start by simplifying both sides of the equation.
Left side:
[tex]\[ h(-2x + 2) = h(-2x) + h(2) = -2hx + 2h \][/tex]
Right side:
[tex]\[ -8(x - 8) = -8x + 64 \][/tex]
2. For the equation to have a single unique solution, the coefficients of [tex]\( x \)[/tex] on both sides need to be the same.
Compare the coefficients of [tex]\( x \)[/tex]:
[tex]\[ -2h = -8 \][/tex]
3. Solve for [tex]\( h \)[/tex]:
[tex]\[ h = \frac{-8}{-2} = 4 \][/tex]
We also ensure that the constant terms (terms without [tex]\( x \)[/tex]) do not affect the number of solutions. The equation is balanced once the [tex]\( x \)[/tex] coefficients are aligned.
Thus, the number of [tex]\( x \)[/tex]'s on either side of the equation is the same (specifically, one on each side).
So the completed sentence should read:
This equation will have one solution when [tex]\( h = 4 \)[/tex] because you get one solution when you have 1 number of [tex]\( x \)[/tex]'s on either side of the equation.
[tex]\[ h(-2x + 2) = -8(x - 8) \][/tex]
has a single unique solution, we need to ensure that the coefficient of [tex]\( x \)[/tex] on both sides of the equation are equal.
1. Start by simplifying both sides of the equation.
Left side:
[tex]\[ h(-2x + 2) = h(-2x) + h(2) = -2hx + 2h \][/tex]
Right side:
[tex]\[ -8(x - 8) = -8x + 64 \][/tex]
2. For the equation to have a single unique solution, the coefficients of [tex]\( x \)[/tex] on both sides need to be the same.
Compare the coefficients of [tex]\( x \)[/tex]:
[tex]\[ -2h = -8 \][/tex]
3. Solve for [tex]\( h \)[/tex]:
[tex]\[ h = \frac{-8}{-2} = 4 \][/tex]
We also ensure that the constant terms (terms without [tex]\( x \)[/tex]) do not affect the number of solutions. The equation is balanced once the [tex]\( x \)[/tex] coefficients are aligned.
Thus, the number of [tex]\( x \)[/tex]'s on either side of the equation is the same (specifically, one on each side).
So the completed sentence should read:
This equation will have one solution when [tex]\( h = 4 \)[/tex] because you get one solution when you have 1 number of [tex]\( x \)[/tex]'s on either side of the equation.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.