Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the nature of the roots for the quadratic equation [tex]\(2x^2 + 5x - 7 = 0\)[/tex], we need to evaluate the discriminant of the equation. The discriminant ([tex]\(\Delta\)[/tex]) for a quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
For the equation [tex]\(2x^2 + 5x - 7 = 0\)[/tex]:
- The coefficient [tex]\(a\)[/tex] is 2,
- The coefficient [tex]\(b\)[/tex] is 5,
- The constant term [tex]\(c\)[/tex] is -7.
Substituting these values into the discriminant formula:
[tex]\[ \Delta = 5^2 - 4 \cdot 2 \cdot (-7) \][/tex]
Calculating this step by step:
1. [tex]\(5^2 = 25\)[/tex]
2. [tex]\(4 \cdot 2 = 8\)[/tex]
3. [tex]\(8 \cdot (-7) = -56\)[/tex]
4. Therefore, [tex]\(\Delta = 25 - (-56) = 25 + 56 = 81\)[/tex]
The discriminant [tex]\(\Delta\)[/tex] is 81.
Next, we interpret the value of the discriminant:
- If [tex]\(\Delta > 0\)[/tex], the equation has two distinct real roots.
- If [tex]\(\Delta = 0\)[/tex], the equation has exactly one real double root.
- If [tex]\(\Delta < 0\)[/tex], the equation has two non-real (complex) roots.
Since [tex]\(\Delta = 81\)[/tex] and [tex]\(81 > 0\)[/tex], we have two distinct real roots. To further classify these real roots as rational or irrational, we check if the discriminant is a perfect square:
- The square root of 81 is 9, which is an integer. Therefore, the discriminant is a perfect square.
Thus, the quadratic equation [tex]\(2x^2 + 5x - 7 = 0\)[/tex] has two real, rational roots.
The correct answer is:
A. Two real, rational roots
[tex]\[ \Delta = b^2 - 4ac \][/tex]
For the equation [tex]\(2x^2 + 5x - 7 = 0\)[/tex]:
- The coefficient [tex]\(a\)[/tex] is 2,
- The coefficient [tex]\(b\)[/tex] is 5,
- The constant term [tex]\(c\)[/tex] is -7.
Substituting these values into the discriminant formula:
[tex]\[ \Delta = 5^2 - 4 \cdot 2 \cdot (-7) \][/tex]
Calculating this step by step:
1. [tex]\(5^2 = 25\)[/tex]
2. [tex]\(4 \cdot 2 = 8\)[/tex]
3. [tex]\(8 \cdot (-7) = -56\)[/tex]
4. Therefore, [tex]\(\Delta = 25 - (-56) = 25 + 56 = 81\)[/tex]
The discriminant [tex]\(\Delta\)[/tex] is 81.
Next, we interpret the value of the discriminant:
- If [tex]\(\Delta > 0\)[/tex], the equation has two distinct real roots.
- If [tex]\(\Delta = 0\)[/tex], the equation has exactly one real double root.
- If [tex]\(\Delta < 0\)[/tex], the equation has two non-real (complex) roots.
Since [tex]\(\Delta = 81\)[/tex] and [tex]\(81 > 0\)[/tex], we have two distinct real roots. To further classify these real roots as rational or irrational, we check if the discriminant is a perfect square:
- The square root of 81 is 9, which is an integer. Therefore, the discriminant is a perfect square.
Thus, the quadratic equation [tex]\(2x^2 + 5x - 7 = 0\)[/tex] has two real, rational roots.
The correct answer is:
A. Two real, rational roots
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.