Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's solve for the vertical asymptote of the function [tex]\(y = \log(x - 4)\)[/tex].
1. Understand the argument of the logarithmic function:
The function [tex]\( y = \log(x - 4) \)[/tex] is defined only when the argument inside the logarithm, [tex]\( x - 4 \)[/tex], is positive. This means:
[tex]\[ x - 4 > 0 \][/tex]
Therefore,
[tex]\[ x > 4 \][/tex]
2. Vertical asymptote:
A vertical asymptote occurs where the argument of the logarithm goes to zero. For the function [tex]\( y = \log(x - 4) \)[/tex], the argument inside the logarithm is [tex]\( x - 4 \)[/tex].
3. Set the argument equal to zero:
To find the vertical asymptote, set the argument [tex]\( x - 4 \)[/tex] equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 4 = 0 \][/tex]
[tex]\[ x = 4 \][/tex]
Thus, the vertical asymptote of the function [tex]\( y = \log(x - 4) \)[/tex] is at:
[tex]\[ x = 4 \][/tex]
Hence, the final answer is [tex]\( \boxed{4} \)[/tex].
1. Understand the argument of the logarithmic function:
The function [tex]\( y = \log(x - 4) \)[/tex] is defined only when the argument inside the logarithm, [tex]\( x - 4 \)[/tex], is positive. This means:
[tex]\[ x - 4 > 0 \][/tex]
Therefore,
[tex]\[ x > 4 \][/tex]
2. Vertical asymptote:
A vertical asymptote occurs where the argument of the logarithm goes to zero. For the function [tex]\( y = \log(x - 4) \)[/tex], the argument inside the logarithm is [tex]\( x - 4 \)[/tex].
3. Set the argument equal to zero:
To find the vertical asymptote, set the argument [tex]\( x - 4 \)[/tex] equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 4 = 0 \][/tex]
[tex]\[ x = 4 \][/tex]
Thus, the vertical asymptote of the function [tex]\( y = \log(x - 4) \)[/tex] is at:
[tex]\[ x = 4 \][/tex]
Hence, the final answer is [tex]\( \boxed{4} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.