Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the problem step-by-step:
1. Identify the Complex Number and its Conjugate:
The given complex number is [tex]\(-3 - 5i\)[/tex]. To find its conjugate, we change the sign of the imaginary part.
[tex]\[ \text{Conjugate of } -3 - 5i \text{ is } -3 + 5i. \][/tex]
2. Calculate the Product:
We need to multiply the complex number by its conjugate:
[tex]\[ (-3 - 5i) \times (-3 + 5i). \][/tex]
3. Use the Formula for Product of a Complex Number and its Conjugate:
The product of a complex number [tex]\(a + bi\)[/tex] and its conjugate [tex]\(a - bi\)[/tex] is given by:
[tex]\[ (a + bi)(a - bi) = a^2 + b^2. \][/tex]
In our case, [tex]\(a = -3\)[/tex] and [tex]\(b = -5\)[/tex].
4. Substitute the Values:
Substitute [tex]\(a\)[/tex] and [tex]\(b\)[/tex] into the formula:
[tex]\[ (-3)^2 + (-5)^2 = 9 + 25. \][/tex]
5. Perform the Addition:
Calculate the sum:
[tex]\[ 9 + 25 = 34. \][/tex]
6. Interpret the Result:
Since the product of a complex number and its conjugate is always a real number (no imaginary part), the result [tex]\(34\)[/tex] is purely real with an imaginary part of [tex]\(0\)[/tex]. Therefore:
[tex]\[ a = 34 \quad \text{and} \quad b = 0. \][/tex]
So, the product of [tex]\(-3-5i\)[/tex] and its conjugate is [tex]\((34.0, 0.0)\)[/tex]. Thus,
- The real number [tex]\(a\)[/tex] equals [tex]\(\boxed{34}\)[/tex],
- The real number [tex]\(b\)[/tex] equals [tex]\(\boxed{0}\)[/tex].
1. Identify the Complex Number and its Conjugate:
The given complex number is [tex]\(-3 - 5i\)[/tex]. To find its conjugate, we change the sign of the imaginary part.
[tex]\[ \text{Conjugate of } -3 - 5i \text{ is } -3 + 5i. \][/tex]
2. Calculate the Product:
We need to multiply the complex number by its conjugate:
[tex]\[ (-3 - 5i) \times (-3 + 5i). \][/tex]
3. Use the Formula for Product of a Complex Number and its Conjugate:
The product of a complex number [tex]\(a + bi\)[/tex] and its conjugate [tex]\(a - bi\)[/tex] is given by:
[tex]\[ (a + bi)(a - bi) = a^2 + b^2. \][/tex]
In our case, [tex]\(a = -3\)[/tex] and [tex]\(b = -5\)[/tex].
4. Substitute the Values:
Substitute [tex]\(a\)[/tex] and [tex]\(b\)[/tex] into the formula:
[tex]\[ (-3)^2 + (-5)^2 = 9 + 25. \][/tex]
5. Perform the Addition:
Calculate the sum:
[tex]\[ 9 + 25 = 34. \][/tex]
6. Interpret the Result:
Since the product of a complex number and its conjugate is always a real number (no imaginary part), the result [tex]\(34\)[/tex] is purely real with an imaginary part of [tex]\(0\)[/tex]. Therefore:
[tex]\[ a = 34 \quad \text{and} \quad b = 0. \][/tex]
So, the product of [tex]\(-3-5i\)[/tex] and its conjugate is [tex]\((34.0, 0.0)\)[/tex]. Thus,
- The real number [tex]\(a\)[/tex] equals [tex]\(\boxed{34}\)[/tex],
- The real number [tex]\(b\)[/tex] equals [tex]\(\boxed{0}\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.