Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To factorize the polynomial [tex]\( P(x) = x^4 - 4x^3 + 4x^2 - 36x - 45 \)[/tex] given that the roots are 5 and -1, we will follow a systematic step-by-step process:
### Step 1: Verify that 5 and -1 are roots
We know from the problem statement that 5 and -1 are roots. Therefore, [tex]\(x - 5\)[/tex] and [tex]\(x + 1\)[/tex] are factors of the polynomial.
### Step 2: Divide the polynomial by [tex]\((x - 5)\)[/tex] and [tex]\((x + 1)\)[/tex]
First, we will divide [tex]\( P(x) \)[/tex] by [tex]\((x - 5)\)[/tex]:
[tex]\[ P(x) = (x - 5)Q(x) \][/tex]
After division, [tex]\( Q(x) \)[/tex] represents the quotient.
Next, we will divide the obtained quotient [tex]\( Q(x) \)[/tex] by [tex]\((x + 1)\)[/tex]:
[tex]\[ Q(x) = (x + 1)R(x) \][/tex]
After this division, [tex]\( R(x) \)[/tex] represents the remaining quotient.
### Step 3: Find the factorization of the remaining quotient [tex]\( R(x) \)[/tex]
The quotient [tex]\( R(x) \)[/tex] will be a quadratic polynomial. We then need to factorize [tex]\( R(x) \)[/tex] completely to find its roots.
### Step 4: Combine all factors
Combining the factors obtained from [tex]\(5\)[/tex] and [tex]\(-1\)[/tex] with the factorized form of [tex]\( R(x) \)[/tex], we will get the complete factorization of [tex]\( P(x) \)[/tex].
### Result
Carrying out the steps described, we arrive at the complete factorization:
[tex]\[ P(x) = (x - 5)(x + 1)(x^2 + 9) \][/tex]
Given the options:
a) [tex]\((x + 5)(x - 1)(x - 3i)(x + 3i)\)[/tex]
b) [tex]\((x - 5)(x + 1)(x - 3i)(x + 3i)\)[/tex]
c) [tex]\((n - 5)(n \perp 1)(n^2 - 0)\)[/tex]
The correct answer is:
b) [tex]\((x - 5)(x + 1)(x - 3i)(x + 3i)\)[/tex]
Breaking it down:
- [tex]\((x - 5)\)[/tex] and [tex]\((x + 1)\)[/tex] are given roots corresponding to 5 and -1.
- The quadratic [tex]\(x^2 + 9\)[/tex] can be factored further over the complex numbers to [tex]\((x - 3i)(x + 3i)\)[/tex].
Therefore, the complete factorization of [tex]\( P(x) \)[/tex] is:
[tex]\((x - 5)(x + 1)(x - 3i)(x + 3i)\)[/tex].
### Step 1: Verify that 5 and -1 are roots
We know from the problem statement that 5 and -1 are roots. Therefore, [tex]\(x - 5\)[/tex] and [tex]\(x + 1\)[/tex] are factors of the polynomial.
### Step 2: Divide the polynomial by [tex]\((x - 5)\)[/tex] and [tex]\((x + 1)\)[/tex]
First, we will divide [tex]\( P(x) \)[/tex] by [tex]\((x - 5)\)[/tex]:
[tex]\[ P(x) = (x - 5)Q(x) \][/tex]
After division, [tex]\( Q(x) \)[/tex] represents the quotient.
Next, we will divide the obtained quotient [tex]\( Q(x) \)[/tex] by [tex]\((x + 1)\)[/tex]:
[tex]\[ Q(x) = (x + 1)R(x) \][/tex]
After this division, [tex]\( R(x) \)[/tex] represents the remaining quotient.
### Step 3: Find the factorization of the remaining quotient [tex]\( R(x) \)[/tex]
The quotient [tex]\( R(x) \)[/tex] will be a quadratic polynomial. We then need to factorize [tex]\( R(x) \)[/tex] completely to find its roots.
### Step 4: Combine all factors
Combining the factors obtained from [tex]\(5\)[/tex] and [tex]\(-1\)[/tex] with the factorized form of [tex]\( R(x) \)[/tex], we will get the complete factorization of [tex]\( P(x) \)[/tex].
### Result
Carrying out the steps described, we arrive at the complete factorization:
[tex]\[ P(x) = (x - 5)(x + 1)(x^2 + 9) \][/tex]
Given the options:
a) [tex]\((x + 5)(x - 1)(x - 3i)(x + 3i)\)[/tex]
b) [tex]\((x - 5)(x + 1)(x - 3i)(x + 3i)\)[/tex]
c) [tex]\((n - 5)(n \perp 1)(n^2 - 0)\)[/tex]
The correct answer is:
b) [tex]\((x - 5)(x + 1)(x - 3i)(x + 3i)\)[/tex]
Breaking it down:
- [tex]\((x - 5)\)[/tex] and [tex]\((x + 1)\)[/tex] are given roots corresponding to 5 and -1.
- The quadratic [tex]\(x^2 + 9\)[/tex] can be factored further over the complex numbers to [tex]\((x - 3i)(x + 3i)\)[/tex].
Therefore, the complete factorization of [tex]\( P(x) \)[/tex] is:
[tex]\((x - 5)(x + 1)(x - 3i)(x + 3i)\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.