Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! To determine the future value of a deposit when the interest is compounded continuously, we use the formula for continuous compounding:
[tex]\[ A = P \times e^{rt} \][/tex]
where:
- [tex]\( A \)[/tex] is the future value of the investment/loan, including interest.
- [tex]\( P \)[/tex] is the principal investment amount (the initial deposit).
- [tex]\( r \)[/tex] is the annual interest rate (decimal).
- [tex]\( t \)[/tex] is the time the money is invested for, in years.
- [tex]\( e \)[/tex] is the base of the natural logarithm, approximately equal to 2.71828.
In this scenario:
- The initial deposit ([tex]\( P \)[/tex]) is \[tex]$1,000. - The annual interest rate (\( r \)) is 1.6%, which is 0.016 as a decimal. - The number of years (\( t \)) the money is invested is 18 years. Plugging these values into the formula, we get: \[ A = 1000 \times e^{(0.016 \times 18)} \] First, we compute the exponent: \[ 0.016 \times 18 = 0.288 \] Next, we calculate \( e^{0.288} \): \[ e^{0.288} \approx 1.33376 \] Then, we multiply this result by the principal amount, \( P \): \[ A = 1000 \times 1.33376 = 1333.76 \] Therefore, the future value of the deposit after 18 years, rounded to the nearest cent, is \$[/tex]1333.76.
[tex]\[ A = P \times e^{rt} \][/tex]
where:
- [tex]\( A \)[/tex] is the future value of the investment/loan, including interest.
- [tex]\( P \)[/tex] is the principal investment amount (the initial deposit).
- [tex]\( r \)[/tex] is the annual interest rate (decimal).
- [tex]\( t \)[/tex] is the time the money is invested for, in years.
- [tex]\( e \)[/tex] is the base of the natural logarithm, approximately equal to 2.71828.
In this scenario:
- The initial deposit ([tex]\( P \)[/tex]) is \[tex]$1,000. - The annual interest rate (\( r \)) is 1.6%, which is 0.016 as a decimal. - The number of years (\( t \)) the money is invested is 18 years. Plugging these values into the formula, we get: \[ A = 1000 \times e^{(0.016 \times 18)} \] First, we compute the exponent: \[ 0.016 \times 18 = 0.288 \] Next, we calculate \( e^{0.288} \): \[ e^{0.288} \approx 1.33376 \] Then, we multiply this result by the principal amount, \( P \): \[ A = 1000 \times 1.33376 = 1333.76 \] Therefore, the future value of the deposit after 18 years, rounded to the nearest cent, is \$[/tex]1333.76.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.