At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
First, let's analyze the given table to understand the data provided:
[tex]\[ \begin{array}{lccc} & \text{Positive Test} & \text{Negative Test} & \text{Total} \\ \text{Has Disease} & 18 & 2 & 20 \\ \text{Does Not Have Disease} & 98 & 882 & 980 \\ \text{Total} & 116 & 884 & 1000 \\ \end{array} \][/tex]
We need to determine the probability that a person does not have the disease given that they received a positive test result.
### Steps to Solve:
1. Identify the relevant numbers:
- Number of positive test results = 116 (from the total positive tests column).
- Number of positive test results where the person does not have the disease = 98 (from the "Does Not Have Disease" row under the positive test column).
2. Calculate the probability:
- The probability of not having the disease given a positive test result is the ratio of the number of positive tests where the person does not have the disease to the total number of positive tests.
[tex]\[ P(\text{No Disease} | \text{Positive Test}) = \frac{\text{Number of Positive Tests with No Disease}}{\text{Total Number of Positive Tests}} = \frac{98}{116} \][/tex]
3. Convert the probability to a percentage:
- To convert this probability to a percentage, multiply by 100.
[tex]\[ P(\text{No Disease} | \text{Positive Test}) \times 100 = \left(\frac{98}{116}\right) \times 100 \][/tex]
4. Determine the final value:
- Given our calculations:
[tex]\[ \frac{98}{116} \approx 0.8448275862068966 \][/tex]
- Converting this to a percentage:
[tex]\[ 0.8448275862068966 \times 100 \approx 84.48275862068965 \% \][/tex]
### Conclusion:
The probability that a person does not have the disease given that they received a positive test result is approximately [tex]\( 84.5\% \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{84.5\%} \][/tex]
[tex]\[ \begin{array}{lccc} & \text{Positive Test} & \text{Negative Test} & \text{Total} \\ \text{Has Disease} & 18 & 2 & 20 \\ \text{Does Not Have Disease} & 98 & 882 & 980 \\ \text{Total} & 116 & 884 & 1000 \\ \end{array} \][/tex]
We need to determine the probability that a person does not have the disease given that they received a positive test result.
### Steps to Solve:
1. Identify the relevant numbers:
- Number of positive test results = 116 (from the total positive tests column).
- Number of positive test results where the person does not have the disease = 98 (from the "Does Not Have Disease" row under the positive test column).
2. Calculate the probability:
- The probability of not having the disease given a positive test result is the ratio of the number of positive tests where the person does not have the disease to the total number of positive tests.
[tex]\[ P(\text{No Disease} | \text{Positive Test}) = \frac{\text{Number of Positive Tests with No Disease}}{\text{Total Number of Positive Tests}} = \frac{98}{116} \][/tex]
3. Convert the probability to a percentage:
- To convert this probability to a percentage, multiply by 100.
[tex]\[ P(\text{No Disease} | \text{Positive Test}) \times 100 = \left(\frac{98}{116}\right) \times 100 \][/tex]
4. Determine the final value:
- Given our calculations:
[tex]\[ \frac{98}{116} \approx 0.8448275862068966 \][/tex]
- Converting this to a percentage:
[tex]\[ 0.8448275862068966 \times 100 \approx 84.48275862068965 \% \][/tex]
### Conclusion:
The probability that a person does not have the disease given that they received a positive test result is approximately [tex]\( 84.5\% \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{84.5\%} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.