Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's solve the inequality [tex]\( |2x + 4| > 16 \)[/tex] step-by-step.
1. Understanding Absolute Value Inequality:
The given inequality is [tex]\( |2x + 4| > 16 \)[/tex]. Absolute value inequalities can be split into two linear inequalities. Specifically, [tex]\( |A| > B \)[/tex] is equivalent to [tex]\( A > B \)[/tex] or [tex]\( A < -B \)[/tex].
2. Setting Up the Inequalities:
Applying this to our inequality [tex]\( |2x + 4| > 16 \)[/tex], we split it into two separate inequalities:
[tex]\[ \begin{cases} 2x + 4 > 16 \\ 2x + 4 < -16 \end{cases} \][/tex]
3. Solving Each Inequality:
- First Inequality: [tex]\( 2x + 4 > 16 \)[/tex]
[tex]\[ 2x + 4 > 16 \][/tex]
Subtract 4 from both sides:
[tex]\[ 2x > 12 \][/tex]
Divide both sides by 2:
[tex]\[ x > 6 \][/tex]
So, one solution is [tex]\( x > 6 \)[/tex].
- Second Inequality: [tex]\( 2x + 4 < -16 \)[/tex]
[tex]\[ 2x + 4 < -16 \][/tex]
Subtract 4 from both sides:
[tex]\[ 2x < -20 \][/tex]
Divide both sides by 2:
[tex]\[ x < -10 \][/tex]
So, another solution is [tex]\( x < -10 \)[/tex].
4. Combining the Solutions:
The solutions to the inequality [tex]\( |2x + 4| > 16 \)[/tex] are the values of [tex]\( x \)[/tex] that satisfy either [tex]\( x > 6 \)[/tex] or [tex]\( x < -10 \)[/tex].
Therefore, the solution to the inequality [tex]\( |2x + 4| > 16 \)[/tex] can be expressed as:
[tex]\[ x > 6 \quad \text{or} \quad x < -10 \][/tex]
In interval notation, the solution is:
[tex]\[ (-\infty, -10) \cup (6, \infty) \][/tex]
This thorough, step-by-step process demonstrates how the solution to the inequality [tex]\( |2x + 4| > 16 \)[/tex] is determined.
1. Understanding Absolute Value Inequality:
The given inequality is [tex]\( |2x + 4| > 16 \)[/tex]. Absolute value inequalities can be split into two linear inequalities. Specifically, [tex]\( |A| > B \)[/tex] is equivalent to [tex]\( A > B \)[/tex] or [tex]\( A < -B \)[/tex].
2. Setting Up the Inequalities:
Applying this to our inequality [tex]\( |2x + 4| > 16 \)[/tex], we split it into two separate inequalities:
[tex]\[ \begin{cases} 2x + 4 > 16 \\ 2x + 4 < -16 \end{cases} \][/tex]
3. Solving Each Inequality:
- First Inequality: [tex]\( 2x + 4 > 16 \)[/tex]
[tex]\[ 2x + 4 > 16 \][/tex]
Subtract 4 from both sides:
[tex]\[ 2x > 12 \][/tex]
Divide both sides by 2:
[tex]\[ x > 6 \][/tex]
So, one solution is [tex]\( x > 6 \)[/tex].
- Second Inequality: [tex]\( 2x + 4 < -16 \)[/tex]
[tex]\[ 2x + 4 < -16 \][/tex]
Subtract 4 from both sides:
[tex]\[ 2x < -20 \][/tex]
Divide both sides by 2:
[tex]\[ x < -10 \][/tex]
So, another solution is [tex]\( x < -10 \)[/tex].
4. Combining the Solutions:
The solutions to the inequality [tex]\( |2x + 4| > 16 \)[/tex] are the values of [tex]\( x \)[/tex] that satisfy either [tex]\( x > 6 \)[/tex] or [tex]\( x < -10 \)[/tex].
Therefore, the solution to the inequality [tex]\( |2x + 4| > 16 \)[/tex] can be expressed as:
[tex]\[ x > 6 \quad \text{or} \quad x < -10 \][/tex]
In interval notation, the solution is:
[tex]\[ (-\infty, -10) \cup (6, \infty) \][/tex]
This thorough, step-by-step process demonstrates how the solution to the inequality [tex]\( |2x + 4| > 16 \)[/tex] is determined.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.