Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's carefully examine the given mappings to identify the underlying rule.
We have the following input-output pairs:
[tex]\[ \begin{array}{cccccc} 0 & 1 & 2 & 3 & 4 & 5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 2 & 5 & 8 & 11 & 14 & 17 \end{array} \][/tex]
To find the rule, we will analyze the relationship between each input [tex]\( x \)[/tex] and its corresponding output [tex]\( y \)[/tex].
1. Identify the change in mapping:
For [tex]\( x = 0 \)[/tex], [tex]\( y = 2 \)[/tex]
For [tex]\( x = 1 \)[/tex], [tex]\( y = 5 \)[/tex]
For [tex]\( x = 2 \)[/tex], [tex]\( y = 8 \)[/tex]
For [tex]\( x = 3 \)[/tex], [tex]\( y = 11 \)[/tex]
For [tex]\( x = 4 \)[/tex], [tex]\( y = 14 \)[/tex]
For [tex]\( x = 5 \)[/tex], [tex]\( y = 17 \)[/tex]
2. Examine the pattern:
Let's analyze the changes in the output values:
- [tex]\( 5 - 2 = 3 \)[/tex]
- [tex]\( 8 - 5 = 3 \)[/tex]
- [tex]\( 11 - 8 = 3 \)[/tex]
- [tex]\( 14 - 11 = 3 \)[/tex]
- [tex]\( 17 - 14 = 3 \)[/tex]
We see a consistent change of [tex]\( 3 \)[/tex] in the output when the input increases by [tex]\( 1 \)[/tex].
3. Determine the relationship:
Given the pattern, we can hypothesize that the relationship between [tex]\( y \)[/tex] and [tex]\( x \)[/tex] is linear: [tex]\( y = mx + c \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( c \)[/tex] is the y-intercept.
From the pattern above, the slope [tex]\( m \)[/tex] is [tex]\( 3 \)[/tex] because the output increases by 3 for each increase of 1 in the input.
Let's determine the y-intercept [tex]\( c \)[/tex]:
Using the first pair [tex]\((0, 2)\)[/tex]:
[tex]\[ y = 3x + c \][/tex]
[tex]\[ 2 = 3(0) + c \][/tex]
[tex]\[ c = 2 \][/tex]
Thus, the rule is established as:
[tex]\[ y = 3x + 2 \][/tex]
4. Verify the rule:
To ensure our derived rule [tex]\( y = 3x + 2 \)[/tex] is correct, let's apply it to all given input values:
- For [tex]\( x = 0 \)[/tex], [tex]\( y = 3(0) + 2 = 2 \)[/tex]
- For [tex]\( x = 1 \)[/tex], [tex]\( y = 3(1) + 2 = 5 \)[/tex]
- For [tex]\( x = 2 \)[/tex], [tex]\( y = 3(2) + 2 = 8 \)[/tex]
- For [tex]\( x = 3 \)[/tex], [tex]\( y = 3(3) + 2 = 11 \)[/tex]
- For [tex]\( x = 4 \)[/tex], [tex]\( y = 3(4) + 2 = 14 \)[/tex]
- For [tex]\( x = 5 \)[/tex], [tex]\( y = 3(5) + 2 = 17 \)[/tex]
All the values match the given mapping perfectly.
Therefore, the rule for the given mapping is:
[tex]\[ y = 3x + 2 \][/tex]
We have the following input-output pairs:
[tex]\[ \begin{array}{cccccc} 0 & 1 & 2 & 3 & 4 & 5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 2 & 5 & 8 & 11 & 14 & 17 \end{array} \][/tex]
To find the rule, we will analyze the relationship between each input [tex]\( x \)[/tex] and its corresponding output [tex]\( y \)[/tex].
1. Identify the change in mapping:
For [tex]\( x = 0 \)[/tex], [tex]\( y = 2 \)[/tex]
For [tex]\( x = 1 \)[/tex], [tex]\( y = 5 \)[/tex]
For [tex]\( x = 2 \)[/tex], [tex]\( y = 8 \)[/tex]
For [tex]\( x = 3 \)[/tex], [tex]\( y = 11 \)[/tex]
For [tex]\( x = 4 \)[/tex], [tex]\( y = 14 \)[/tex]
For [tex]\( x = 5 \)[/tex], [tex]\( y = 17 \)[/tex]
2. Examine the pattern:
Let's analyze the changes in the output values:
- [tex]\( 5 - 2 = 3 \)[/tex]
- [tex]\( 8 - 5 = 3 \)[/tex]
- [tex]\( 11 - 8 = 3 \)[/tex]
- [tex]\( 14 - 11 = 3 \)[/tex]
- [tex]\( 17 - 14 = 3 \)[/tex]
We see a consistent change of [tex]\( 3 \)[/tex] in the output when the input increases by [tex]\( 1 \)[/tex].
3. Determine the relationship:
Given the pattern, we can hypothesize that the relationship between [tex]\( y \)[/tex] and [tex]\( x \)[/tex] is linear: [tex]\( y = mx + c \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( c \)[/tex] is the y-intercept.
From the pattern above, the slope [tex]\( m \)[/tex] is [tex]\( 3 \)[/tex] because the output increases by 3 for each increase of 1 in the input.
Let's determine the y-intercept [tex]\( c \)[/tex]:
Using the first pair [tex]\((0, 2)\)[/tex]:
[tex]\[ y = 3x + c \][/tex]
[tex]\[ 2 = 3(0) + c \][/tex]
[tex]\[ c = 2 \][/tex]
Thus, the rule is established as:
[tex]\[ y = 3x + 2 \][/tex]
4. Verify the rule:
To ensure our derived rule [tex]\( y = 3x + 2 \)[/tex] is correct, let's apply it to all given input values:
- For [tex]\( x = 0 \)[/tex], [tex]\( y = 3(0) + 2 = 2 \)[/tex]
- For [tex]\( x = 1 \)[/tex], [tex]\( y = 3(1) + 2 = 5 \)[/tex]
- For [tex]\( x = 2 \)[/tex], [tex]\( y = 3(2) + 2 = 8 \)[/tex]
- For [tex]\( x = 3 \)[/tex], [tex]\( y = 3(3) + 2 = 11 \)[/tex]
- For [tex]\( x = 4 \)[/tex], [tex]\( y = 3(4) + 2 = 14 \)[/tex]
- For [tex]\( x = 5 \)[/tex], [tex]\( y = 3(5) + 2 = 17 \)[/tex]
All the values match the given mapping perfectly.
Therefore, the rule for the given mapping is:
[tex]\[ y = 3x + 2 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.