Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

What is the energy of a photon of infrared radiation with a frequency of [tex]2.53 \times 10^{12} \text{Hz}[/tex]? Planck's constant is [tex]6.63 \times 10^{-34} \text{J} \cdot \text{s}[/tex].

A. [tex]1.68 \times 10^{23} \text{J}[/tex]
B. [tex]1.68 \times 10^{47} \text{J}[/tex]
C. [tex]1.68 \times 10^{-21} \text{J}[/tex]
D. [tex]1.68 \times 10^{-45} \text{J}[/tex]


Sagot :

To find the energy of a photon given its frequency, we can use the well-known formula from quantum mechanics:

[tex]\[ E = h \cdot f \][/tex]

where:
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\( 6.63 \times 10^{-34} \)[/tex] J·s), and
- [tex]\( f \)[/tex] is the frequency of the photon ([tex]\( 2.53 \times 10^{12} \)[/tex] Hz).

Let's go through the steps to calculate the energy:

1. Identify the given values:
- Frequency ([tex]\( f \)[/tex]): [tex]\( 2.53 \times 10^{12} \)[/tex] Hz
- Planck's constant ([tex]\( h \)[/tex]): [tex]\( 6.63 \times 10^{-34} \)[/tex] J·s

2. Substitute the values into the formula:
[tex]\[ E = (6.63 \times 10^{-34} \text{ J·s}) \times (2.53 \times 10^{12} \text{ Hz}) \][/tex]

3. Multiply the numbers and the exponents:
[tex]\[ E = 6.63 \times 2.53 \times 10^{-34 + 12} \text{ J} \][/tex]

4. Calculate the product of the coefficients:
[tex]\[ 6.63 \times 2.53 = 16.7679 \][/tex]

5. Combine the exponents:
[tex]\[ 10^{-34 + 12} = 10^{-22} \][/tex]

6. Put it all together:
[tex]\[ E = 16.7679 \times 10^{-22} \text{ J} \][/tex]

7. Adjust the number to proper scientific notation:
[tex]\[ E \approx 1.67739 \times 10^{-21} \text{ J} \][/tex]

Now that we have calculated the energy to be roughly [tex]\( 1.67739 \times 10^{-21} \)[/tex] J, we need to compare this result with the given choices to find the closest match.

Here are the choices provided:
- [tex]\( 1.68 \times 10^{23} \)[/tex] J
- [tex]\( 1.68 \times 10^{47} \)[/tex] J
- [tex]\( 1.68 \times 10^{-21} \)[/tex] J
- [tex]\( 1.68 \times 10^{-45} \)[/tex] J

The closest and most accurate match is [tex]\( 1.68 \times 10^{-21} \)[/tex] J. Thus, the correct answer is:
[tex]\[ \boxed{1.68 \times 10^{-21} \text{ J}}. \][/tex]