Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the energy of a photon given its frequency, we can use the well-known formula from quantum mechanics:
[tex]\[ E = h \cdot f \][/tex]
where:
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\( 6.63 \times 10^{-34} \)[/tex] J·s), and
- [tex]\( f \)[/tex] is the frequency of the photon ([tex]\( 2.53 \times 10^{12} \)[/tex] Hz).
Let's go through the steps to calculate the energy:
1. Identify the given values:
- Frequency ([tex]\( f \)[/tex]): [tex]\( 2.53 \times 10^{12} \)[/tex] Hz
- Planck's constant ([tex]\( h \)[/tex]): [tex]\( 6.63 \times 10^{-34} \)[/tex] J·s
2. Substitute the values into the formula:
[tex]\[ E = (6.63 \times 10^{-34} \text{ J·s}) \times (2.53 \times 10^{12} \text{ Hz}) \][/tex]
3. Multiply the numbers and the exponents:
[tex]\[ E = 6.63 \times 2.53 \times 10^{-34 + 12} \text{ J} \][/tex]
4. Calculate the product of the coefficients:
[tex]\[ 6.63 \times 2.53 = 16.7679 \][/tex]
5. Combine the exponents:
[tex]\[ 10^{-34 + 12} = 10^{-22} \][/tex]
6. Put it all together:
[tex]\[ E = 16.7679 \times 10^{-22} \text{ J} \][/tex]
7. Adjust the number to proper scientific notation:
[tex]\[ E \approx 1.67739 \times 10^{-21} \text{ J} \][/tex]
Now that we have calculated the energy to be roughly [tex]\( 1.67739 \times 10^{-21} \)[/tex] J, we need to compare this result with the given choices to find the closest match.
Here are the choices provided:
- [tex]\( 1.68 \times 10^{23} \)[/tex] J
- [tex]\( 1.68 \times 10^{47} \)[/tex] J
- [tex]\( 1.68 \times 10^{-21} \)[/tex] J
- [tex]\( 1.68 \times 10^{-45} \)[/tex] J
The closest and most accurate match is [tex]\( 1.68 \times 10^{-21} \)[/tex] J. Thus, the correct answer is:
[tex]\[ \boxed{1.68 \times 10^{-21} \text{ J}}. \][/tex]
[tex]\[ E = h \cdot f \][/tex]
where:
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\( 6.63 \times 10^{-34} \)[/tex] J·s), and
- [tex]\( f \)[/tex] is the frequency of the photon ([tex]\( 2.53 \times 10^{12} \)[/tex] Hz).
Let's go through the steps to calculate the energy:
1. Identify the given values:
- Frequency ([tex]\( f \)[/tex]): [tex]\( 2.53 \times 10^{12} \)[/tex] Hz
- Planck's constant ([tex]\( h \)[/tex]): [tex]\( 6.63 \times 10^{-34} \)[/tex] J·s
2. Substitute the values into the formula:
[tex]\[ E = (6.63 \times 10^{-34} \text{ J·s}) \times (2.53 \times 10^{12} \text{ Hz}) \][/tex]
3. Multiply the numbers and the exponents:
[tex]\[ E = 6.63 \times 2.53 \times 10^{-34 + 12} \text{ J} \][/tex]
4. Calculate the product of the coefficients:
[tex]\[ 6.63 \times 2.53 = 16.7679 \][/tex]
5. Combine the exponents:
[tex]\[ 10^{-34 + 12} = 10^{-22} \][/tex]
6. Put it all together:
[tex]\[ E = 16.7679 \times 10^{-22} \text{ J} \][/tex]
7. Adjust the number to proper scientific notation:
[tex]\[ E \approx 1.67739 \times 10^{-21} \text{ J} \][/tex]
Now that we have calculated the energy to be roughly [tex]\( 1.67739 \times 10^{-21} \)[/tex] J, we need to compare this result with the given choices to find the closest match.
Here are the choices provided:
- [tex]\( 1.68 \times 10^{23} \)[/tex] J
- [tex]\( 1.68 \times 10^{47} \)[/tex] J
- [tex]\( 1.68 \times 10^{-21} \)[/tex] J
- [tex]\( 1.68 \times 10^{-45} \)[/tex] J
The closest and most accurate match is [tex]\( 1.68 \times 10^{-21} \)[/tex] J. Thus, the correct answer is:
[tex]\[ \boxed{1.68 \times 10^{-21} \text{ J}}. \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.