Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the volume of the new solution when the concentration is changed, we need to follow these steps:
1. Determine the number of moles of solute present in the initial solution:
- The concentration (C) of the initial solution is 1.75 M (moles per liter).
- The volume (V) of the initial solution is 84.0 milliliters (which is 0.084 liters as 1 liter = 1000 milliliters).
The formula to calculate moles (n) is:
[tex]\[ n = C \times V \][/tex]
Plugging in the initial values:
[tex]\[ n = 1.75 \, \text{M} \times 0.084 \, \text{L} = 0.147 \, \text{moles} \][/tex]
So, the initial solution contains 0.147 moles of sodium bromide (NaBr).
2. Calculate the new volume of the solution which has the same moles but a different concentration:
- The final concentration (C') is 1.00 M.
- The number of moles of solute remains the same at 0.147 moles.
The formula to find the volume of a solution given its concentration and the number of moles is:
[tex]\[ V' = \frac{n}{C'} \][/tex]
Plugging in the values:
[tex]\[ V' = \frac{0.147 \, \text{moles}}{1.00 \, \text{M}} = 0.147 \, \text{L} \][/tex]
Converting this volume back to milliliters:
[tex]\[ 0.147 \, \text{L} \times 1000 \, \text{mL/L} = 147.0 \, \text{mL} \][/tex]
Thus, the volume of the new solution is 147.0 milliliters.
1. Determine the number of moles of solute present in the initial solution:
- The concentration (C) of the initial solution is 1.75 M (moles per liter).
- The volume (V) of the initial solution is 84.0 milliliters (which is 0.084 liters as 1 liter = 1000 milliliters).
The formula to calculate moles (n) is:
[tex]\[ n = C \times V \][/tex]
Plugging in the initial values:
[tex]\[ n = 1.75 \, \text{M} \times 0.084 \, \text{L} = 0.147 \, \text{moles} \][/tex]
So, the initial solution contains 0.147 moles of sodium bromide (NaBr).
2. Calculate the new volume of the solution which has the same moles but a different concentration:
- The final concentration (C') is 1.00 M.
- The number of moles of solute remains the same at 0.147 moles.
The formula to find the volume of a solution given its concentration and the number of moles is:
[tex]\[ V' = \frac{n}{C'} \][/tex]
Plugging in the values:
[tex]\[ V' = \frac{0.147 \, \text{moles}}{1.00 \, \text{M}} = 0.147 \, \text{L} \][/tex]
Converting this volume back to milliliters:
[tex]\[ 0.147 \, \text{L} \times 1000 \, \text{mL/L} = 147.0 \, \text{mL} \][/tex]
Thus, the volume of the new solution is 147.0 milliliters.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.