Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure! Let's solve each of these equations step by step.
### 1. Solving [tex]\(\frac{3}{4} x = 9\)[/tex] for [tex]\(x\)[/tex]:
First, isolate [tex]\(x\)[/tex]:
[tex]\[ \frac{3}{4} x = 9 \][/tex]
Multiply both sides by [tex]\(\frac{4}{3}\)[/tex] to get [tex]\(x\)[/tex] alone:
[tex]\[ x = 9 \times \frac{4}{3} \][/tex]
Simplifying the right side:
[tex]\[ x = 12 \][/tex]
### 2. Solving [tex]\(a + x = b\)[/tex] for [tex]\(x\)[/tex]:
We need to express [tex]\(x\)[/tex] in terms of [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ a + x = b \][/tex]
Subtract [tex]\(a\)[/tex] from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x = b - a \][/tex]
### 3. Solving [tex]\(c x = d\)[/tex] for [tex]\(x\)[/tex]:
We need to express [tex]\(x\)[/tex] in terms of [tex]\(c\)[/tex] and [tex]\(d\)[/tex]:
[tex]\[ c x = d \][/tex]
Divide both sides by [tex]\(c\)[/tex] to isolate [tex]\(x\)[/tex]:
[tex]\[ x = \frac{d}{c} \][/tex]
### 4. Solving [tex]\(a + 5 x = 7 x - r\)[/tex] for [tex]\(r\)[/tex]:
First, let's simplify and isolate [tex]\(r\)[/tex]:
[tex]\[ a + 5 x = 7 x - r \][/tex]
Subtract [tex]\(5 x\)[/tex] from both sides:
[tex]\[ a = 7 x - 5 x - r \][/tex]
Which simplifies to:
[tex]\[ a = 2 x - r \][/tex]
Add [tex]\(r\)[/tex] to both sides:
[tex]\[ a + r = 2 x \][/tex]
Subtract [tex]\(a\)[/tex] from both sides to isolate [tex]\(r\)[/tex]:
[tex]\[ r = 2 x - a \][/tex]
### Summary:
Combining all these results, we get:
1. [tex]\( x = 12 \)[/tex]
2. [tex]\( x = b - a \)[/tex]
3. [tex]\( x = \frac{d}{c} \)[/tex]
4. [tex]\( r = 2 x - a \)[/tex]
So, the solutions to the given equations are:
[tex]\[ (x, x \text{ in terms of } a \text{ and } b, x \text{ in terms of } c \text{ and } d, r \text{ in terms of } a \text{ and } x) = (12, b - a, \frac{d}{c}, 2x - a) \][/tex]
### 1. Solving [tex]\(\frac{3}{4} x = 9\)[/tex] for [tex]\(x\)[/tex]:
First, isolate [tex]\(x\)[/tex]:
[tex]\[ \frac{3}{4} x = 9 \][/tex]
Multiply both sides by [tex]\(\frac{4}{3}\)[/tex] to get [tex]\(x\)[/tex] alone:
[tex]\[ x = 9 \times \frac{4}{3} \][/tex]
Simplifying the right side:
[tex]\[ x = 12 \][/tex]
### 2. Solving [tex]\(a + x = b\)[/tex] for [tex]\(x\)[/tex]:
We need to express [tex]\(x\)[/tex] in terms of [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ a + x = b \][/tex]
Subtract [tex]\(a\)[/tex] from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x = b - a \][/tex]
### 3. Solving [tex]\(c x = d\)[/tex] for [tex]\(x\)[/tex]:
We need to express [tex]\(x\)[/tex] in terms of [tex]\(c\)[/tex] and [tex]\(d\)[/tex]:
[tex]\[ c x = d \][/tex]
Divide both sides by [tex]\(c\)[/tex] to isolate [tex]\(x\)[/tex]:
[tex]\[ x = \frac{d}{c} \][/tex]
### 4. Solving [tex]\(a + 5 x = 7 x - r\)[/tex] for [tex]\(r\)[/tex]:
First, let's simplify and isolate [tex]\(r\)[/tex]:
[tex]\[ a + 5 x = 7 x - r \][/tex]
Subtract [tex]\(5 x\)[/tex] from both sides:
[tex]\[ a = 7 x - 5 x - r \][/tex]
Which simplifies to:
[tex]\[ a = 2 x - r \][/tex]
Add [tex]\(r\)[/tex] to both sides:
[tex]\[ a + r = 2 x \][/tex]
Subtract [tex]\(a\)[/tex] from both sides to isolate [tex]\(r\)[/tex]:
[tex]\[ r = 2 x - a \][/tex]
### Summary:
Combining all these results, we get:
1. [tex]\( x = 12 \)[/tex]
2. [tex]\( x = b - a \)[/tex]
3. [tex]\( x = \frac{d}{c} \)[/tex]
4. [tex]\( r = 2 x - a \)[/tex]
So, the solutions to the given equations are:
[tex]\[ (x, x \text{ in terms of } a \text{ and } b, x \text{ in terms of } c \text{ and } d, r \text{ in terms of } a \text{ and } x) = (12, b - a, \frac{d}{c}, 2x - a) \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.