Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the value of [tex]\( b \)[/tex] for the function [tex]\( f(x) = \frac{1}{4}x^2 + bx + 10 \)[/tex] given that the axis of symmetry is [tex]\( x = 6 \)[/tex], follow these steps:
1. Recall that for a quadratic function [tex]\( ax^2 + bx + c \)[/tex], the axis of symmetry is given by the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
2. For the given function [tex]\( f(x) = \frac{1}{4}x^2 + bx + 10 \)[/tex], identify the coefficients:
[tex]\[ a = \frac{1}{4}, \quad b = b, \quad c = 10 \][/tex]
3. Substitute [tex]\( a = \frac{1}{4} \)[/tex] into the axis of symmetry formula:
[tex]\[ x = -\frac{b}{2 \cdot \frac{1}{4}} = -\frac{b}{\frac{1}{2}} = -2b \][/tex]
4. We know the axis of symmetry is [tex]\( x = 6 \)[/tex]. Set this equal to our derived expression for the axis of symmetry:
[tex]\[ -2b = 6 \][/tex]
5. Solve for [tex]\( b \)[/tex]:
[tex]\[ -2b = 6 \\ b = -\frac{6}{2} \\ b = -3 \][/tex]
Therefore, the value of [tex]\( b \)[/tex] is [tex]\( \boxed{-3} \)[/tex].
1. Recall that for a quadratic function [tex]\( ax^2 + bx + c \)[/tex], the axis of symmetry is given by the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
2. For the given function [tex]\( f(x) = \frac{1}{4}x^2 + bx + 10 \)[/tex], identify the coefficients:
[tex]\[ a = \frac{1}{4}, \quad b = b, \quad c = 10 \][/tex]
3. Substitute [tex]\( a = \frac{1}{4} \)[/tex] into the axis of symmetry formula:
[tex]\[ x = -\frac{b}{2 \cdot \frac{1}{4}} = -\frac{b}{\frac{1}{2}} = -2b \][/tex]
4. We know the axis of symmetry is [tex]\( x = 6 \)[/tex]. Set this equal to our derived expression for the axis of symmetry:
[tex]\[ -2b = 6 \][/tex]
5. Solve for [tex]\( b \)[/tex]:
[tex]\[ -2b = 6 \\ b = -\frac{6}{2} \\ b = -3 \][/tex]
Therefore, the value of [tex]\( b \)[/tex] is [tex]\( \boxed{-3} \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.