Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To fully understand Allen's function, let's break down the components of the given expression [tex]\( f(x) = 5\left(\frac{1}{10}\right)^x \)[/tex].
1. Initial Value at [tex]\( x=0 \)[/tex]:
At [tex]\( x=0 \)[/tex]:
[tex]\[ f(0) = 5 \left(\frac{1}{10}\right)^0 = 5 \times 1 = 5 \][/tex]
This confirms that the initial value of the function, or the y-intercept, is indeed [tex]\( 5 \)[/tex].
2. Rate of Decay:
The expression given is [tex]\( \left(\frac{1}{10}\right)^x \)[/tex], which indicates an exponential decay because the base [tex]\(\frac{1}{10}\)[/tex] is less than 1.
The term [tex]\(\frac{1}{10}\)[/tex] can also be represented as [tex]\( 0.1 \)[/tex]. This highlights that the rate of decay is [tex]\( 0.1 \)[/tex] or 10%.
3. Exponential Function Form:
An exponential decay function can generally be expressed as:
[tex]\[ f(x) = \text{initial value} \times (\text{decay rate})^x \][/tex]
Here, the initial value is [tex]\( 5 \)[/tex], and the decay rate is [tex]\( \frac{1}{10} \)[/tex] (or 0.1).
Completing the statement:
Allen's function is an exponential decay function because the exponential function [tex]\( f \)[/tex] should have a base equal to the expression [tex]\( 0.1 \)[/tex] (or [tex]\(\frac{1}{10}\)[/tex]) and an initial value of [tex]\( 5 \)[/tex].
So, the completed statement is:
Allen's function is an exponential decay function because the exponential function [tex]\( f \)[/tex] should have a base equal to the expression [tex]\( 0.1 \)[/tex] and an initial value of [tex]\( 5 \)[/tex].
1. Initial Value at [tex]\( x=0 \)[/tex]:
At [tex]\( x=0 \)[/tex]:
[tex]\[ f(0) = 5 \left(\frac{1}{10}\right)^0 = 5 \times 1 = 5 \][/tex]
This confirms that the initial value of the function, or the y-intercept, is indeed [tex]\( 5 \)[/tex].
2. Rate of Decay:
The expression given is [tex]\( \left(\frac{1}{10}\right)^x \)[/tex], which indicates an exponential decay because the base [tex]\(\frac{1}{10}\)[/tex] is less than 1.
The term [tex]\(\frac{1}{10}\)[/tex] can also be represented as [tex]\( 0.1 \)[/tex]. This highlights that the rate of decay is [tex]\( 0.1 \)[/tex] or 10%.
3. Exponential Function Form:
An exponential decay function can generally be expressed as:
[tex]\[ f(x) = \text{initial value} \times (\text{decay rate})^x \][/tex]
Here, the initial value is [tex]\( 5 \)[/tex], and the decay rate is [tex]\( \frac{1}{10} \)[/tex] (or 0.1).
Completing the statement:
Allen's function is an exponential decay function because the exponential function [tex]\( f \)[/tex] should have a base equal to the expression [tex]\( 0.1 \)[/tex] (or [tex]\(\frac{1}{10}\)[/tex]) and an initial value of [tex]\( 5 \)[/tex].
So, the completed statement is:
Allen's function is an exponential decay function because the exponential function [tex]\( f \)[/tex] should have a base equal to the expression [tex]\( 0.1 \)[/tex] and an initial value of [tex]\( 5 \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.