Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the expected change in the freezing point of water in a solution of [tex]\( 62.5 \)[/tex] g of barium nitrate ([tex]\(Ba(NO_3)_2\)[/tex]) in 1 kg of water, we need to follow several steps. Here's a detailed step-by-step calculation:
### Step 1: Calculate the number of moles of [tex]\(Ba(NO_3)_2\)[/tex]
The given mass of barium nitrate is [tex]\(62.5 \)[/tex] g and the molar mass of [tex]\(Ba(NO_3)_2\)[/tex] is [tex]\(261 \)[/tex] g/mol. The number of moles can be determined using the formula:
[tex]\[ \text{moles of } Ba(NO_3)_2 = \frac{\text{mass}}{\text{molar mass}} \][/tex]
[tex]\[ \text{moles of } Ba(NO_3)_2 = \frac{62.5 \text{ g}}{261 \text{ g/mol}} \][/tex]
[tex]\[ \text{moles of } Ba(NO_3)_2 \approx 0.239 \text{ moles} \][/tex]
### Step 2: Determining the Van't Hoff factor
Barium nitrate ([tex]\(Ba(NO_3)_2\)[/tex]) dissociates completely in water to form barium ions ([tex]\(Ba^{2+}\)[/tex]) and nitrate ions ([tex]\(NO_3^-\)[/tex]). The dissociation can be represented as:
[tex]\[ Ba(NO_3)_2 \rightarrow Ba^{2+} + 2 NO_3^- \][/tex]
This results in 3 ions (1 [tex]\(Ba^{2+}\)[/tex] ion and 2 [tex]\(NO_3^-\)[/tex] ions).
So, the Van't Hoff factor [tex]\(i\)[/tex] for [tex]\(Ba(NO_3)_2\)[/tex] is:
[tex]\[ i = 3 \][/tex]
### Step 3: Calculate the freezing point depression
The formula for freezing point depression ([tex]\(\Delta T_f\)[/tex]) is:
[tex]\[ \Delta T_f = i \cdot K_f \cdot m \][/tex]
where:
- [tex]\( i \)[/tex] is the Van't Hoff factor
- [tex]\( K_f \)[/tex] is the freezing point depression constant for water ([tex]\(1.86 \ ^\circ C \cdot kg/mol\)[/tex])
- [tex]\( m \)[/tex] is the molality of the solution
The molality [tex]\(m\)[/tex] of the solution is calculated as:
[tex]\[ m = \frac{\text{moles of solute}}{\text{kg of solvent}} \][/tex]
Here, the solvent is water and its mass is 1 kg:
[tex]\[ m = \frac{0.239 \text{ moles}}{1 \text{ kg}} \][/tex]
[tex]\[ m = 0.239 \text{ mol/kg} \][/tex]
Now, substitute these values into the freezing point depression formula:
[tex]\[ \Delta T_f = 3 \cdot 1.86 \ ^\circ C \cdot kg/mol \cdot 0.239 \text{ mol/kg} \][/tex]
[tex]\[ \Delta T_f \approx 1.336 \ ^\circ C \][/tex]
### Conclusion
The freezing point of water decreases by approximately [tex]\(1.336 \ ^\circ C\)[/tex], which means the change in the freezing point is [tex]\(-1.336 \ ^\circ C\)[/tex].
Among the given options, the closest correct answer is:
a. [tex]\(-1.34 ^\circ C\)[/tex]
### Step 1: Calculate the number of moles of [tex]\(Ba(NO_3)_2\)[/tex]
The given mass of barium nitrate is [tex]\(62.5 \)[/tex] g and the molar mass of [tex]\(Ba(NO_3)_2\)[/tex] is [tex]\(261 \)[/tex] g/mol. The number of moles can be determined using the formula:
[tex]\[ \text{moles of } Ba(NO_3)_2 = \frac{\text{mass}}{\text{molar mass}} \][/tex]
[tex]\[ \text{moles of } Ba(NO_3)_2 = \frac{62.5 \text{ g}}{261 \text{ g/mol}} \][/tex]
[tex]\[ \text{moles of } Ba(NO_3)_2 \approx 0.239 \text{ moles} \][/tex]
### Step 2: Determining the Van't Hoff factor
Barium nitrate ([tex]\(Ba(NO_3)_2\)[/tex]) dissociates completely in water to form barium ions ([tex]\(Ba^{2+}\)[/tex]) and nitrate ions ([tex]\(NO_3^-\)[/tex]). The dissociation can be represented as:
[tex]\[ Ba(NO_3)_2 \rightarrow Ba^{2+} + 2 NO_3^- \][/tex]
This results in 3 ions (1 [tex]\(Ba^{2+}\)[/tex] ion and 2 [tex]\(NO_3^-\)[/tex] ions).
So, the Van't Hoff factor [tex]\(i\)[/tex] for [tex]\(Ba(NO_3)_2\)[/tex] is:
[tex]\[ i = 3 \][/tex]
### Step 3: Calculate the freezing point depression
The formula for freezing point depression ([tex]\(\Delta T_f\)[/tex]) is:
[tex]\[ \Delta T_f = i \cdot K_f \cdot m \][/tex]
where:
- [tex]\( i \)[/tex] is the Van't Hoff factor
- [tex]\( K_f \)[/tex] is the freezing point depression constant for water ([tex]\(1.86 \ ^\circ C \cdot kg/mol\)[/tex])
- [tex]\( m \)[/tex] is the molality of the solution
The molality [tex]\(m\)[/tex] of the solution is calculated as:
[tex]\[ m = \frac{\text{moles of solute}}{\text{kg of solvent}} \][/tex]
Here, the solvent is water and its mass is 1 kg:
[tex]\[ m = \frac{0.239 \text{ moles}}{1 \text{ kg}} \][/tex]
[tex]\[ m = 0.239 \text{ mol/kg} \][/tex]
Now, substitute these values into the freezing point depression formula:
[tex]\[ \Delta T_f = 3 \cdot 1.86 \ ^\circ C \cdot kg/mol \cdot 0.239 \text{ mol/kg} \][/tex]
[tex]\[ \Delta T_f \approx 1.336 \ ^\circ C \][/tex]
### Conclusion
The freezing point of water decreases by approximately [tex]\(1.336 \ ^\circ C\)[/tex], which means the change in the freezing point is [tex]\(-1.336 \ ^\circ C\)[/tex].
Among the given options, the closest correct answer is:
a. [tex]\(-1.34 ^\circ C\)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.