At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Relating Radians and Arc Measure

An arc on a circle measures [tex]$250^{\circ}$[/tex]. Within which range is the radian measure of the central angle?

A. 0 to [tex]$\frac{\pi}{2}$[/tex] radians
B. [tex][tex]$\frac{\pi}{2}$[/tex][/tex] to [tex]$\pi$[/tex] radians
C. [tex]$\pi$[/tex] to [tex]$\frac{3 \pi}{2}$[/tex] radians
D. [tex][tex]$\frac{3 \pi}{2}$[/tex][/tex] to [tex]2 \pi$[/tex] radians


Sagot :

To determine the range within which the radian measure of a 250° arc lies, follow these steps:

1. Understand the Problem: We are given an arc measure of 250° and need to find its equivalent measure in radians. Then we will place this radian measure within one of the specified intervals.

2. Convert Degrees to Radians:
The formula for converting degrees to radians is:
[tex]\[ \text{radians} = \text{degrees} \times \left(\frac{\pi}{180}\right) \][/tex]
Substituting 250° into the formula:
[tex]\[ \text{radians} = 250 \times \left(\frac{\pi}{180}\right) \][/tex]

3. Evaluate the Conversion:
Simplify the multiplication:
[tex]\[ \text{radians} = 250 \times \left(\frac{\pi}{180}\right) = \frac{250\pi}{180} = \frac{25\pi}{18} \][/tex]
Noting that:
[tex]\[ \frac{25}{18} \approx 1.38889 \][/tex]
Hence:
[tex]\[ \text{radians} = \frac{25\pi}{18} \approx 1.38889\pi \][/tex]

4. Determine the Numerical Value:
We know [tex]\(\pi \approx 3.14159\)[/tex], therefore:
[tex]\[ \text{radians} \approx 1.38889 \times 3.14159 \approx 4.36332 \text{ radians} \][/tex]

5. Classify the Radian Measure:
We must classify this radian measure into the given intervals:
- [tex]\(0\)[/tex] to [tex]\(\frac{\pi}{2}\)[/tex] radians: [tex]\(0\)[/tex] to [tex]\(1.5708\)[/tex] radians
- [tex]\(\frac{\pi}{2}\)[/tex] to [tex]\(\pi\)[/tex] radians: [tex]\(1.5708\)[/tex] to [tex]\(3.1416\)[/tex] radians
- [tex]\(\pi\)[/tex] to [tex]\(\frac{3\pi}{2}\)[/tex] radians: [tex]\(3.1416\)[/tex] to [tex]\(4.7124\)[/tex] radians
- [tex]\(\frac{3\pi}{2}\)[/tex] to [tex]\(2\pi\)[/tex] radians: [tex]\(4.7124\)[/tex] to [tex]\(6.2832\)[/tex] radians

Looking at our radian measure of approximately 4.36332:
[tex]\[ \pi (3.1416) < 4.36332 < \frac{3\pi}{2} (4.7124) \][/tex]

6. Conclusion:
The radian measure falls in the interval [tex]\(\pi\)[/tex] to [tex]\(\frac{3\pi}{2}\)[/tex].

Therefore, the radian measure of a 250° arc lies within the range:
[tex]\[ \pi \text{ to } \frac{3\pi}{2} \text{ radians} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.