Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the sum of the measures of the interior angles of a regular polygon where each exterior angle measures [tex]\(72^\circ\)[/tex], we can follow these steps:
1. Determine the number of sides ([tex]\(n\)[/tex]) of the polygon:
Since each exterior angle of a regular polygon is equal, we can use the fact that the sum of all exterior angles is always [tex]\(360^\circ\)[/tex]. Therefore, we can find the number of sides by dividing [tex]\(360^\circ\)[/tex] by the measure of one exterior angle:
[tex]\[ n = \frac{360^\circ}{72^\circ} = 5 \][/tex]
So, the polygon has 5 sides, meaning it is a pentagon.
2. Calculate the sum of the interior angles of the polygon:
The sum of the interior angles of a polygon with [tex]\(n\)[/tex] sides is given by the formula:
[tex]\[ \text{Sum of interior angles} = (n - 2) \times 180^\circ \][/tex]
For our 5-sided polygon, we substitute [tex]\(n = 5\)[/tex]:
[tex]\[ \text{Sum of interior angles} = (5 - 2) \times 180^\circ = 3 \times 180^\circ = 540^\circ \][/tex]
Therefore, the sum of the measures of the interior angles of the regular polygon is [tex]\(540^\circ\)[/tex].
The correct answer is:
[tex]\[ \boxed{540^\circ} \][/tex]
1. Determine the number of sides ([tex]\(n\)[/tex]) of the polygon:
Since each exterior angle of a regular polygon is equal, we can use the fact that the sum of all exterior angles is always [tex]\(360^\circ\)[/tex]. Therefore, we can find the number of sides by dividing [tex]\(360^\circ\)[/tex] by the measure of one exterior angle:
[tex]\[ n = \frac{360^\circ}{72^\circ} = 5 \][/tex]
So, the polygon has 5 sides, meaning it is a pentagon.
2. Calculate the sum of the interior angles of the polygon:
The sum of the interior angles of a polygon with [tex]\(n\)[/tex] sides is given by the formula:
[tex]\[ \text{Sum of interior angles} = (n - 2) \times 180^\circ \][/tex]
For our 5-sided polygon, we substitute [tex]\(n = 5\)[/tex]:
[tex]\[ \text{Sum of interior angles} = (5 - 2) \times 180^\circ = 3 \times 180^\circ = 540^\circ \][/tex]
Therefore, the sum of the measures of the interior angles of the regular polygon is [tex]\(540^\circ\)[/tex].
The correct answer is:
[tex]\[ \boxed{540^\circ} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.