Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine how fast the height of the gravel pile is increasing when the pile is 20 feet high, we'll use the given parameters. Let's break down the problem step-by-step:
### Step 1: Identify the Given Information
1. Gravel is being dumped at a rate of [tex]\( 20 \)[/tex] cubic feet per minute. This is the rate of change of the volume ([tex]\( \frac{dV}{dt} \)[/tex]).
2. The height of the pile is [tex]\( h = 20 \)[/tex] feet when we are evaluating.
3. The base diameter and height of the cone are always equal. Therefore, the diameter [tex]\( d = h \)[/tex], and the radius [tex]\( r = \frac{d}{2} = \frac{h}{2} \)[/tex].
### Step 2: Write the Volume Formula
The volume [tex]\( V \)[/tex] of a right circular cone is given by:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
Since [tex]\( r = \frac{h}{2} \)[/tex]:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{h}{2}\right)^2 h = \frac{1}{3} \pi \left(\frac{h^2}{4}\right) h = \frac{1}{12} \pi h^3 \][/tex]
### Step 3: Differentiate the Volume with Respect to Time
To find how fast the height [tex]\( h \)[/tex] is increasing with respect to time, we need to differentiate [tex]\( V \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{dV}{dt} = \frac{d}{dt} \left(\frac{1}{12} \pi h^3 \right) \][/tex]
Using the chain rule:
[tex]\[ \frac{dV}{dt} = \frac{1}{12} \pi \cdot 3h^2 \cdot \frac{dh}{dt} \][/tex]
[tex]\[ \frac{dV}{dt} = \frac{1}{4} \pi h^2 \frac{dh}{dt} \][/tex]
### Step 4: Solve for [tex]\( \frac{dh}{dt} \)[/tex]
Given [tex]\( \frac{dV}{dt} = 20 \)[/tex] cubic feet per minute, and [tex]\( h = 20 \)[/tex] feet, we can substitute these values into the equation:
[tex]\[ 20 = \frac{1}{4} \pi (20)^2 \frac{dh}{dt} \][/tex]
Simplify and solve for [tex]\( \frac{dh}{dt} \)[/tex]:
[tex]\[ 20 = \frac{1}{4} \pi \cdot 400 \cdot \frac{dh}{dt} \][/tex]
[tex]\[ 20 = 100 \pi \cdot \frac{dh}{dt} \][/tex]
[tex]\[ \frac{dh}{dt} = \frac{20}{100 \pi} \][/tex]
[tex]\[ \frac{dh}{dt} = \frac{1}{5 \pi} \][/tex]
Convert this to a decimal:
[tex]\[ \frac{dh}{dt} \approx 0.06366197723675814 \][/tex]
Therefore, the height of the pile is increasing at a rate of approximately [tex]\( 0.06366 \)[/tex] feet per minute when the pile is 20 feet high.
### Step 1: Identify the Given Information
1. Gravel is being dumped at a rate of [tex]\( 20 \)[/tex] cubic feet per minute. This is the rate of change of the volume ([tex]\( \frac{dV}{dt} \)[/tex]).
2. The height of the pile is [tex]\( h = 20 \)[/tex] feet when we are evaluating.
3. The base diameter and height of the cone are always equal. Therefore, the diameter [tex]\( d = h \)[/tex], and the radius [tex]\( r = \frac{d}{2} = \frac{h}{2} \)[/tex].
### Step 2: Write the Volume Formula
The volume [tex]\( V \)[/tex] of a right circular cone is given by:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
Since [tex]\( r = \frac{h}{2} \)[/tex]:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{h}{2}\right)^2 h = \frac{1}{3} \pi \left(\frac{h^2}{4}\right) h = \frac{1}{12} \pi h^3 \][/tex]
### Step 3: Differentiate the Volume with Respect to Time
To find how fast the height [tex]\( h \)[/tex] is increasing with respect to time, we need to differentiate [tex]\( V \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{dV}{dt} = \frac{d}{dt} \left(\frac{1}{12} \pi h^3 \right) \][/tex]
Using the chain rule:
[tex]\[ \frac{dV}{dt} = \frac{1}{12} \pi \cdot 3h^2 \cdot \frac{dh}{dt} \][/tex]
[tex]\[ \frac{dV}{dt} = \frac{1}{4} \pi h^2 \frac{dh}{dt} \][/tex]
### Step 4: Solve for [tex]\( \frac{dh}{dt} \)[/tex]
Given [tex]\( \frac{dV}{dt} = 20 \)[/tex] cubic feet per minute, and [tex]\( h = 20 \)[/tex] feet, we can substitute these values into the equation:
[tex]\[ 20 = \frac{1}{4} \pi (20)^2 \frac{dh}{dt} \][/tex]
Simplify and solve for [tex]\( \frac{dh}{dt} \)[/tex]:
[tex]\[ 20 = \frac{1}{4} \pi \cdot 400 \cdot \frac{dh}{dt} \][/tex]
[tex]\[ 20 = 100 \pi \cdot \frac{dh}{dt} \][/tex]
[tex]\[ \frac{dh}{dt} = \frac{20}{100 \pi} \][/tex]
[tex]\[ \frac{dh}{dt} = \frac{1}{5 \pi} \][/tex]
Convert this to a decimal:
[tex]\[ \frac{dh}{dt} \approx 0.06366197723675814 \][/tex]
Therefore, the height of the pile is increasing at a rate of approximately [tex]\( 0.06366 \)[/tex] feet per minute when the pile is 20 feet high.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.