At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the equation [tex]\(\sin\left(\frac{\theta}{2}\right) = -\frac{1}{2}\)[/tex] over all real values of [tex]\(\theta\)[/tex], we proceed as follows:
1. Understand the basic trigonometric equation:
We start with [tex]\(\sin x = -\frac{1}{2}\)[/tex]. We know that sine is negative in the third and fourth quadrants. The reference angle for [tex]\(\sin x = \frac{1}{2}\)[/tex] is [tex]\(\frac{\pi}{6}\)[/tex], thus the solutions for [tex]\(\sin x = -\frac{1}{2}\)[/tex] are:
[tex]\[ x = -\frac{\pi}{6} + 2k\pi \quad \text{and} \quad x = \frac{7\pi}{6} + 2k\pi \][/tex]
for any integer [tex]\(k\)[/tex].
2. Apply the solutions to [tex]\(\sin\left(\frac{\theta}{2}\right)\)[/tex]:
Let [tex]\(x = \frac{\theta}{2}\)[/tex]. Substitute [tex]\(x\)[/tex] with [tex]\(\frac{\theta}{2}\)[/tex] in the general solutions:
[tex]\[ \frac{\theta}{2} = -\frac{\pi}{6} + 2k\pi \quad \text{and} \quad \frac{\theta}{2} = \frac{7\pi}{6} + 2k\pi \][/tex]
3. Solve for [tex]\(\theta\)[/tex]:
Multiply both sides of each equation by 2 to solve for [tex]\(\theta\)[/tex]:
[tex]\[ \theta = -\frac{\pi}{3} + 4k\pi \quad \text{and} \quad \theta = \frac{7\pi}{3} + 4k\pi \][/tex]
4. Rewrite the solutions:
Using [tex]\(n\)[/tex] as any integer (where [tex]\(n = k\)[/tex]):
[tex]\[ \theta = (-\frac{\pi}{3}) + 4n\pi \quad \text{and} \quad \theta = (\frac{7\pi}{3}) + 4n\pi \][/tex]
5. Additional equivalent form:
Noting that [tex]\(\frac{7\pi}{3}\)[/tex] can be expressed as [tex]\(\frac{4\pi}{3} + \pi\)[/tex], we get another commonly used form:
[tex]\[ \theta = (\frac{4\pi}{3}) + 4n\pi \][/tex]
Thus, the general solutions for [tex]\(\theta\)[/tex] are:
[tex]\[ \theta = (-\frac{\pi}{3}) + 4n\pi \quad \text{and} \quad \theta = (\frac{4\pi}{3}) + 4n\pi \][/tex]
So the correct multiple-choice answer is:
[tex]\[ \theta = \frac{7\pi}{3}, \frac{11\pi}{3} \][/tex]
1. Understand the basic trigonometric equation:
We start with [tex]\(\sin x = -\frac{1}{2}\)[/tex]. We know that sine is negative in the third and fourth quadrants. The reference angle for [tex]\(\sin x = \frac{1}{2}\)[/tex] is [tex]\(\frac{\pi}{6}\)[/tex], thus the solutions for [tex]\(\sin x = -\frac{1}{2}\)[/tex] are:
[tex]\[ x = -\frac{\pi}{6} + 2k\pi \quad \text{and} \quad x = \frac{7\pi}{6} + 2k\pi \][/tex]
for any integer [tex]\(k\)[/tex].
2. Apply the solutions to [tex]\(\sin\left(\frac{\theta}{2}\right)\)[/tex]:
Let [tex]\(x = \frac{\theta}{2}\)[/tex]. Substitute [tex]\(x\)[/tex] with [tex]\(\frac{\theta}{2}\)[/tex] in the general solutions:
[tex]\[ \frac{\theta}{2} = -\frac{\pi}{6} + 2k\pi \quad \text{and} \quad \frac{\theta}{2} = \frac{7\pi}{6} + 2k\pi \][/tex]
3. Solve for [tex]\(\theta\)[/tex]:
Multiply both sides of each equation by 2 to solve for [tex]\(\theta\)[/tex]:
[tex]\[ \theta = -\frac{\pi}{3} + 4k\pi \quad \text{and} \quad \theta = \frac{7\pi}{3} + 4k\pi \][/tex]
4. Rewrite the solutions:
Using [tex]\(n\)[/tex] as any integer (where [tex]\(n = k\)[/tex]):
[tex]\[ \theta = (-\frac{\pi}{3}) + 4n\pi \quad \text{and} \quad \theta = (\frac{7\pi}{3}) + 4n\pi \][/tex]
5. Additional equivalent form:
Noting that [tex]\(\frac{7\pi}{3}\)[/tex] can be expressed as [tex]\(\frac{4\pi}{3} + \pi\)[/tex], we get another commonly used form:
[tex]\[ \theta = (\frac{4\pi}{3}) + 4n\pi \][/tex]
Thus, the general solutions for [tex]\(\theta\)[/tex] are:
[tex]\[ \theta = (-\frac{\pi}{3}) + 4n\pi \quad \text{and} \quad \theta = (\frac{4\pi}{3}) + 4n\pi \][/tex]
So the correct multiple-choice answer is:
[tex]\[ \theta = \frac{7\pi}{3}, \frac{11\pi}{3} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.