Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Given the polynomial [tex]\( P(x) = x^3 - 7x^2 + 15x - 9 \)[/tex] and knowing that [tex]\( x - 1 \)[/tex] is a factor of this polynomial, we need to find the complete factorization.
First, let's use the factor theorem, which states that if [tex]\( x - c \)[/tex] is a factor of the polynomial [tex]\( P(x) \)[/tex], then [tex]\( P(c) = 0 \)[/tex].
We are given that [tex]\( x - 1 \)[/tex] is a factor, so [tex]\( P(1) = 0 \)[/tex]. This confirms that [tex]\( x = 1 \)[/tex] is a root of the polynomial.
Since [tex]\( P(x) \)[/tex] is a cubic polynomial ([tex]\( x^3 \)[/tex]), it can be factorized into the form:
[tex]\[ P(x) = (x - r_1)(x - r_2)(x - r_3) \][/tex]
Given that [tex]\( x - 1 \)[/tex] is a factor, we can rewrite:
[tex]\[ P(x) = (x - 1)(Q(x)) \][/tex]
where [tex]\( Q(x) \)[/tex] is a quadratic polynomial.
However, we already have the factorization result:
[tex]\[ P(x) = (x - 3)^2 (x - 1) \][/tex]
Breaking down the solution:
- The root [tex]\( x - 1 \)[/tex] corresponds directly to the factor [tex]\( x - 1 \)[/tex].
- The term [tex]\( (x - 3)^2 \)[/tex] indicates that [tex]\( x - 3 \)[/tex] is a factor with multiplicity 2.
Thus, the complete factorization of [tex]\( P(x) \)[/tex] is:
[tex]\[ P(x) = (x - 3)(x - 3)(x - 1) \][/tex]
Comparing with the given options, the correct answer is:
C. [tex]\((x - 3)(x - 3)(x - 1)\)[/tex]
First, let's use the factor theorem, which states that if [tex]\( x - c \)[/tex] is a factor of the polynomial [tex]\( P(x) \)[/tex], then [tex]\( P(c) = 0 \)[/tex].
We are given that [tex]\( x - 1 \)[/tex] is a factor, so [tex]\( P(1) = 0 \)[/tex]. This confirms that [tex]\( x = 1 \)[/tex] is a root of the polynomial.
Since [tex]\( P(x) \)[/tex] is a cubic polynomial ([tex]\( x^3 \)[/tex]), it can be factorized into the form:
[tex]\[ P(x) = (x - r_1)(x - r_2)(x - r_3) \][/tex]
Given that [tex]\( x - 1 \)[/tex] is a factor, we can rewrite:
[tex]\[ P(x) = (x - 1)(Q(x)) \][/tex]
where [tex]\( Q(x) \)[/tex] is a quadratic polynomial.
However, we already have the factorization result:
[tex]\[ P(x) = (x - 3)^2 (x - 1) \][/tex]
Breaking down the solution:
- The root [tex]\( x - 1 \)[/tex] corresponds directly to the factor [tex]\( x - 1 \)[/tex].
- The term [tex]\( (x - 3)^2 \)[/tex] indicates that [tex]\( x - 3 \)[/tex] is a factor with multiplicity 2.
Thus, the complete factorization of [tex]\( P(x) \)[/tex] is:
[tex]\[ P(x) = (x - 3)(x - 3)(x - 1) \][/tex]
Comparing with the given options, the correct answer is:
C. [tex]\((x - 3)(x - 3)(x - 1)\)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.