Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's carefully analyze each of the given probabilities and relationships using the provided survey data:
1. Given data:
- [tex]\( P(F) = 0.48 \)[/tex]: Probability that a person is a fan of professional football.
- [tex]\( P(C) = 0.12 \)[/tex]: Probability that a person is a fan of car racing.
- [tex]\( P(F \cap C) = 0.09 \)[/tex]: Probability that a person is a fan of both professional football and car racing.
2. Calculate [tex]\( P(F \mid C) \)[/tex]:
- This represents the conditional probability that a person is a football fan given that they are a car racing fan.
- [tex]\( P(F \mid C) = \frac{P(F \cap C)}{P(C)} = \frac{0.09}{0.12} = 0.75 \)[/tex].
3. Calculate [tex]\( P(C \mid F) \)[/tex]:
- This represents the conditional probability that a person is a car racing fan given that they are a football fan.
- [tex]\( P(C \mid F) = \frac{P(F \cap C)}{P(F)} = \frac{0.09}{0.48} = 0.1875 \)[/tex].
4. Check if [tex]\( P(C \cap F) = P(F \cap C) \)[/tex]:
- By the definition of intersection in probability, [tex]\( P(C \cap F) \)[/tex] should always be equal to [tex]\( P(F \cap C) \)[/tex].
- [tex]\( P(C \cap F) = 0.09 \)[/tex] and [tex]\( P(F \cap C) = 0.09 \)[/tex].
- Therefore, [tex]\( P(C \cap F) = P(F \cap C) \)[/tex].
5. Check if [tex]\( P(C \mid F) = P(F \mid C) \)[/tex]:
- [tex]\( P(C \mid F) = 0.1875 \)[/tex] and [tex]\( P(F \mid C) = 0.75 \)[/tex].
- These two conditional probabilities are not equal.
Given the calculated values and the analysis, the true statements from the options are:
1. [tex]\( P(F \mid C) = 0.75 \)[/tex]
2. [tex]\( P(C \cap F) = 0.09 \)[/tex]
3. [tex]\( P(C \cap F) = P(F \cap C) \)[/tex]
Thus, the selected true options are:
- [tex]\( P(F \mid C) = 0.75 \)[/tex]
- [tex]\( P(C \cap F) = 0.09 \)[/tex]
- [tex]\( P(C \cap F) = P(F \cap C) \)[/tex]
1. Given data:
- [tex]\( P(F) = 0.48 \)[/tex]: Probability that a person is a fan of professional football.
- [tex]\( P(C) = 0.12 \)[/tex]: Probability that a person is a fan of car racing.
- [tex]\( P(F \cap C) = 0.09 \)[/tex]: Probability that a person is a fan of both professional football and car racing.
2. Calculate [tex]\( P(F \mid C) \)[/tex]:
- This represents the conditional probability that a person is a football fan given that they are a car racing fan.
- [tex]\( P(F \mid C) = \frac{P(F \cap C)}{P(C)} = \frac{0.09}{0.12} = 0.75 \)[/tex].
3. Calculate [tex]\( P(C \mid F) \)[/tex]:
- This represents the conditional probability that a person is a car racing fan given that they are a football fan.
- [tex]\( P(C \mid F) = \frac{P(F \cap C)}{P(F)} = \frac{0.09}{0.48} = 0.1875 \)[/tex].
4. Check if [tex]\( P(C \cap F) = P(F \cap C) \)[/tex]:
- By the definition of intersection in probability, [tex]\( P(C \cap F) \)[/tex] should always be equal to [tex]\( P(F \cap C) \)[/tex].
- [tex]\( P(C \cap F) = 0.09 \)[/tex] and [tex]\( P(F \cap C) = 0.09 \)[/tex].
- Therefore, [tex]\( P(C \cap F) = P(F \cap C) \)[/tex].
5. Check if [tex]\( P(C \mid F) = P(F \mid C) \)[/tex]:
- [tex]\( P(C \mid F) = 0.1875 \)[/tex] and [tex]\( P(F \mid C) = 0.75 \)[/tex].
- These two conditional probabilities are not equal.
Given the calculated values and the analysis, the true statements from the options are:
1. [tex]\( P(F \mid C) = 0.75 \)[/tex]
2. [tex]\( P(C \cap F) = 0.09 \)[/tex]
3. [tex]\( P(C \cap F) = P(F \cap C) \)[/tex]
Thus, the selected true options are:
- [tex]\( P(F \mid C) = 0.75 \)[/tex]
- [tex]\( P(C \cap F) = 0.09 \)[/tex]
- [tex]\( P(C \cap F) = P(F \cap C) \)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.