At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the type of function represented by the given table, we'll analyze the relationship between the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values. Here is the table for reference:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline y & -7 & -2 & 3 & 8 & 13 & 18 \\ \hline \end{array} \][/tex]
### Step-by-Step Solution:
1. List the given [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & -7 \\ 1 & -2 \\ 2 & 3 \\ 3 & 8 \\ 4 & 13 \\ 5 & 18 \\ \hline \end{array} \][/tex]
2. Calculate the differences between consecutive [tex]\( y \)[/tex]-values:
[tex]\[ \begin{array}{|c|c|c|} \hline x & y & \Delta y \\ \hline 0 & -7 & - \\ 1 & -2 & -2 - (-7) = 5 \\ 2 & 3 & 3 - (-2) = 5 \\ 3 & 8 & 8 - 3 = 5 \\ 4 & 13 & 13 - 8 = 5 \\ 5 & 18 & 18 - 13 = 5 \\ \hline \end{array} \][/tex]
So, the differences between consecutive [tex]\( y \)[/tex]-values are all 5.
3. Analyze the differences:
Since the differences between consecutive [tex]\( y \)[/tex]-values are constant (5), we have a consistent rate of change.
### Conclusion:
A function that has a constant rate of change in [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex] is a linear function.
Thus, the type of function represented by the table is linear.
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline y & -7 & -2 & 3 & 8 & 13 & 18 \\ \hline \end{array} \][/tex]
### Step-by-Step Solution:
1. List the given [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & -7 \\ 1 & -2 \\ 2 & 3 \\ 3 & 8 \\ 4 & 13 \\ 5 & 18 \\ \hline \end{array} \][/tex]
2. Calculate the differences between consecutive [tex]\( y \)[/tex]-values:
[tex]\[ \begin{array}{|c|c|c|} \hline x & y & \Delta y \\ \hline 0 & -7 & - \\ 1 & -2 & -2 - (-7) = 5 \\ 2 & 3 & 3 - (-2) = 5 \\ 3 & 8 & 8 - 3 = 5 \\ 4 & 13 & 13 - 8 = 5 \\ 5 & 18 & 18 - 13 = 5 \\ \hline \end{array} \][/tex]
So, the differences between consecutive [tex]\( y \)[/tex]-values are all 5.
3. Analyze the differences:
Since the differences between consecutive [tex]\( y \)[/tex]-values are constant (5), we have a consistent rate of change.
### Conclusion:
A function that has a constant rate of change in [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex] is a linear function.
Thus, the type of function represented by the table is linear.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.