Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve this problem, let's use the compound interest formula. The compound interest formula is used to find the amount of money that will grow after a certain period of time with a certain interest rate. The formula is:
[tex]\[ A = P(1 + r)^t \][/tex]
- [tex]\( A \)[/tex] is the amount of money accumulated after n years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (in decimal form).
- [tex]\( t \)[/tex] is the time the money is invested or borrowed for, in years.
Given in the question:
- [tex]\( P = 250 \)[/tex] dollars (the initial investment)
- [tex]\( r = 0.09 \)[/tex] (9% annual interest rate)
- [tex]\( t = 15 \)[/tex] years
Let's plug these values into the formula:
[tex]\[ A = 250 \times (1 + 0.09)^{15} \][/tex]
[tex]\[ A = 250 \times (1.09)^{15} \][/tex]
After calculating the above expression, the investment amount ([tex]\( A \)[/tex]) rounds to approximately [tex]$910.62. Therefore, the closest answer to this value is: A. $[/tex]911
[tex]\[ A = P(1 + r)^t \][/tex]
- [tex]\( A \)[/tex] is the amount of money accumulated after n years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (in decimal form).
- [tex]\( t \)[/tex] is the time the money is invested or borrowed for, in years.
Given in the question:
- [tex]\( P = 250 \)[/tex] dollars (the initial investment)
- [tex]\( r = 0.09 \)[/tex] (9% annual interest rate)
- [tex]\( t = 15 \)[/tex] years
Let's plug these values into the formula:
[tex]\[ A = 250 \times (1 + 0.09)^{15} \][/tex]
[tex]\[ A = 250 \times (1.09)^{15} \][/tex]
After calculating the above expression, the investment amount ([tex]\( A \)[/tex]) rounds to approximately [tex]$910.62. Therefore, the closest answer to this value is: A. $[/tex]911
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.