At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the maximum of the profit function [tex]\( P = 2x + 10y \)[/tex] subject to the given constraints, we need to analyze the feasible region determined by the constraints:
1. [tex]\( 4x + 2y \leq 5 \)[/tex]
2. [tex]\( -3x + y \geq -2 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
We will identify the boundary lines of the constraints and determine the feasible region. This is where the solution to our optimal problem lies.
### Step 1: Identify the boundary lines of the constraints
1. For the constraint [tex]\( 4x + 2y \leq 5 \)[/tex]:
- The equation of the line is [tex]\( 4x + 2y = 5 \)[/tex].
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = \frac{5 - 4x}{2} \)[/tex].
2. For the constraint [tex]\( -3x + y \geq -2 \)[/tex]:
- The equation of the line is [tex]\( -3x + y = -2 \)[/tex].
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = 3x - 2 \)[/tex].
3. For the constraints [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex], these are simply the axes [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex], respectively.
### Step 2: Find the intersection points of the boundary lines
To identify the vertices of the feasible region, we find the intersection points of the lines described by the constraints:
1. Intersection of [tex]\( 4x + 2y = 5 \)[/tex] and [tex]\( -3x + y = -2 \)[/tex]:
- Solve these two equations simultaneously.
[tex]\[ 4x + 2(3x - 2) = 5 \][/tex]
[tex]\[ 4x + 6x - 4 = 5 \][/tex]
[tex]\[ 10x - 4 = 5 \][/tex]
[tex]\[ 10x = 9 \implies x = \frac{9}{10} = 0.9 \][/tex]
Substituting [tex]\( x = 0.9 \)[/tex] back into [tex]\( y = 3x - 2 \)[/tex]:
[tex]\[ y = 3(0.9) - 2 = 2.7 - 2 = 0.7 \][/tex]
Therefore, one point is [tex]\( \left(0.9, 0.7\right) \)[/tex].
### Step 3: Check intersections with the axes
- When [tex]\( x = 0 \)[/tex] in [tex]\( 4x + 2y = 5 \)[/tex]:
[tex]\[ 2y = 5 \implies y = \frac{5}{2} = 2.5 \][/tex]
Intersection is [tex]\( (0, 2.5) \)[/tex].
- When [tex]\( y = 0 \)[/tex] in [tex]\( 4x + 2y = 5 \)[/tex]:
[tex]\[ 4x = 5 \implies x = \frac{5}{4} = 1.25 \][/tex]
Intersection is [tex]\( (1.25, 0) \)[/tex].
### Step 4: Evaluate the profit function at these points
The feasible vertices are:
- [tex]\( (0, 2.5) \)[/tex]
- [tex]\( (0.9, 0.7) \)[/tex]
- [tex]\( (1.25, 0) \)[/tex]
- (plus origin which generally does not maximize the profit function)
Evaluate at each point:
- For [tex]\( (0, 2.5) \)[/tex]: [tex]\( P = 2(0) + 10(2.5) = 0 + 25 = 25 \)[/tex]
- For [tex]\( (1.25, 0) \)[/tex]: [tex]\( P = 2(1.25) + 10(0) = 2.5 + 0 = 2.5 \)[/tex]
- For [tex]\( (0.9, 0.7) \)[/tex]: [tex]\( P = 2(0.9) + 10(0.7) = 1.8 + 7 = 8.8 \)[/tex]
### Step 5: Identify the maximum profit
From the calculated profits:
- [tex]\( (0, 2.5) \)[/tex] yields a profit of [tex]\( 25 \)[/tex]
- [tex]\( (0.9, 0.7) \)[/tex] yields a profit of [tex]\( 8.8 \)[/tex]
- [tex]\( (1.25, 0) \)[/tex] yields a profit of [tex]\( 2.5 \)[/tex]
The maximum profit is [tex]\( 25 \)[/tex] at the point [tex]\( (0, 2.5) \)[/tex].
Thus, the maximum profit is:
[tex]\[ \boxed{(0, 2.50, 25.00)} \][/tex]
1. [tex]\( 4x + 2y \leq 5 \)[/tex]
2. [tex]\( -3x + y \geq -2 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
We will identify the boundary lines of the constraints and determine the feasible region. This is where the solution to our optimal problem lies.
### Step 1: Identify the boundary lines of the constraints
1. For the constraint [tex]\( 4x + 2y \leq 5 \)[/tex]:
- The equation of the line is [tex]\( 4x + 2y = 5 \)[/tex].
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = \frac{5 - 4x}{2} \)[/tex].
2. For the constraint [tex]\( -3x + y \geq -2 \)[/tex]:
- The equation of the line is [tex]\( -3x + y = -2 \)[/tex].
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = 3x - 2 \)[/tex].
3. For the constraints [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex], these are simply the axes [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex], respectively.
### Step 2: Find the intersection points of the boundary lines
To identify the vertices of the feasible region, we find the intersection points of the lines described by the constraints:
1. Intersection of [tex]\( 4x + 2y = 5 \)[/tex] and [tex]\( -3x + y = -2 \)[/tex]:
- Solve these two equations simultaneously.
[tex]\[ 4x + 2(3x - 2) = 5 \][/tex]
[tex]\[ 4x + 6x - 4 = 5 \][/tex]
[tex]\[ 10x - 4 = 5 \][/tex]
[tex]\[ 10x = 9 \implies x = \frac{9}{10} = 0.9 \][/tex]
Substituting [tex]\( x = 0.9 \)[/tex] back into [tex]\( y = 3x - 2 \)[/tex]:
[tex]\[ y = 3(0.9) - 2 = 2.7 - 2 = 0.7 \][/tex]
Therefore, one point is [tex]\( \left(0.9, 0.7\right) \)[/tex].
### Step 3: Check intersections with the axes
- When [tex]\( x = 0 \)[/tex] in [tex]\( 4x + 2y = 5 \)[/tex]:
[tex]\[ 2y = 5 \implies y = \frac{5}{2} = 2.5 \][/tex]
Intersection is [tex]\( (0, 2.5) \)[/tex].
- When [tex]\( y = 0 \)[/tex] in [tex]\( 4x + 2y = 5 \)[/tex]:
[tex]\[ 4x = 5 \implies x = \frac{5}{4} = 1.25 \][/tex]
Intersection is [tex]\( (1.25, 0) \)[/tex].
### Step 4: Evaluate the profit function at these points
The feasible vertices are:
- [tex]\( (0, 2.5) \)[/tex]
- [tex]\( (0.9, 0.7) \)[/tex]
- [tex]\( (1.25, 0) \)[/tex]
- (plus origin which generally does not maximize the profit function)
Evaluate at each point:
- For [tex]\( (0, 2.5) \)[/tex]: [tex]\( P = 2(0) + 10(2.5) = 0 + 25 = 25 \)[/tex]
- For [tex]\( (1.25, 0) \)[/tex]: [tex]\( P = 2(1.25) + 10(0) = 2.5 + 0 = 2.5 \)[/tex]
- For [tex]\( (0.9, 0.7) \)[/tex]: [tex]\( P = 2(0.9) + 10(0.7) = 1.8 + 7 = 8.8 \)[/tex]
### Step 5: Identify the maximum profit
From the calculated profits:
- [tex]\( (0, 2.5) \)[/tex] yields a profit of [tex]\( 25 \)[/tex]
- [tex]\( (0.9, 0.7) \)[/tex] yields a profit of [tex]\( 8.8 \)[/tex]
- [tex]\( (1.25, 0) \)[/tex] yields a profit of [tex]\( 2.5 \)[/tex]
The maximum profit is [tex]\( 25 \)[/tex] at the point [tex]\( (0, 2.5) \)[/tex].
Thus, the maximum profit is:
[tex]\[ \boxed{(0, 2.50, 25.00)} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.