Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the equation of the regression line that passes through the points [tex]\((2, 10)\)[/tex] and [tex]\((7, 18)\)[/tex], we follow these steps:
1. Calculate the slope (m):
The formula for the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the given points [tex]\((x_1, y_1) = (2, 10)\)[/tex] and [tex]\((x_2, y_2) = (7, 18)\)[/tex], we get:
[tex]\[ m = \frac{18 - 10}{7 - 2} = \frac{8}{5} = 1.6 \][/tex]
2. Calculate the y-intercept (b):
The formula for the y-intercept [tex]\(b\)[/tex] of the line in the form [tex]\(y = mx + b\)[/tex] is:
[tex]\[ b = y_1 - m \cdot x_1 \][/tex]
Using the calculated slope [tex]\(m = 1.6\)[/tex] and the point [tex]\((2, 10)\)[/tex]:
[tex]\[ b = 10 - (1.6 \times 2) = 10 - 3.2 = 6.8 \][/tex]
3. Formulate the equation of the line:
Combining the slope and y-intercept, the equation of the regression line is:
[tex]\[ \hat{y} = 1.6 x + 6.8 \][/tex]
So, the equation of Jacob's regression line is:
[tex]\[ \hat{y} = 1.6 x + 6.8 \][/tex] Hence, the correct answer is the first option:
[tex]\[ \hat{y} = 1.6 x + 6.8 \][/tex]
1. Calculate the slope (m):
The formula for the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the given points [tex]\((x_1, y_1) = (2, 10)\)[/tex] and [tex]\((x_2, y_2) = (7, 18)\)[/tex], we get:
[tex]\[ m = \frac{18 - 10}{7 - 2} = \frac{8}{5} = 1.6 \][/tex]
2. Calculate the y-intercept (b):
The formula for the y-intercept [tex]\(b\)[/tex] of the line in the form [tex]\(y = mx + b\)[/tex] is:
[tex]\[ b = y_1 - m \cdot x_1 \][/tex]
Using the calculated slope [tex]\(m = 1.6\)[/tex] and the point [tex]\((2, 10)\)[/tex]:
[tex]\[ b = 10 - (1.6 \times 2) = 10 - 3.2 = 6.8 \][/tex]
3. Formulate the equation of the line:
Combining the slope and y-intercept, the equation of the regression line is:
[tex]\[ \hat{y} = 1.6 x + 6.8 \][/tex]
So, the equation of Jacob's regression line is:
[tex]\[ \hat{y} = 1.6 x + 6.8 \][/tex] Hence, the correct answer is the first option:
[tex]\[ \hat{y} = 1.6 x + 6.8 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.