Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the problem of finding the appropriate identity matrices [tex]\( I_m \)[/tex] and [tex]\( I_n \)[/tex] such that [tex]\( I_m A = A \)[/tex] and [tex]\( A I_n = A \)[/tex], let's consider the dimensions of the given matrix [tex]\( A \)[/tex].
The matrix [tex]\( A \)[/tex] is given as:
[tex]\[ A = \begin{pmatrix} 6 & 1 & -2 \\ 4 & -3 & 4 \end{pmatrix} \][/tex]
[tex]\( A \)[/tex] is a [tex]\( 2 \times 3 \)[/tex] matrix, meaning it has 2 rows and 3 columns.
### Finding [tex]\( I_m \)[/tex]:
For the product [tex]\( I_m A = A \)[/tex], the identity matrix [tex]\( I_m \)[/tex] must have dimensions such that it can multiply directly with [tex]\( A \)[/tex] on the left. This means that [tex]\( I_m \)[/tex] must be a [tex]\( 2 \times 2 \)[/tex] identity matrix because [tex]\( I_m A \)[/tex] will involve multiplying a [tex]\( 2 \times 2 \)[/tex] matrix with a [tex]\( 2 \times 3 \)[/tex] matrix, resulting in a [tex]\( 2 \times 3 \)[/tex] matrix (the same dimensions as [tex]\( A \)[/tex]).
The [tex]\( 2 \times 2 \)[/tex] identity matrix [tex]\( I_m \)[/tex] is:
[tex]\[ I_m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
Thus, the appropriate identity matrix [tex]\( I_m \)[/tex] is:
[tex]\[ I_m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
So, [tex]\( I_m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)[/tex].
The matrix [tex]\( A \)[/tex] is given as:
[tex]\[ A = \begin{pmatrix} 6 & 1 & -2 \\ 4 & -3 & 4 \end{pmatrix} \][/tex]
[tex]\( A \)[/tex] is a [tex]\( 2 \times 3 \)[/tex] matrix, meaning it has 2 rows and 3 columns.
### Finding [tex]\( I_m \)[/tex]:
For the product [tex]\( I_m A = A \)[/tex], the identity matrix [tex]\( I_m \)[/tex] must have dimensions such that it can multiply directly with [tex]\( A \)[/tex] on the left. This means that [tex]\( I_m \)[/tex] must be a [tex]\( 2 \times 2 \)[/tex] identity matrix because [tex]\( I_m A \)[/tex] will involve multiplying a [tex]\( 2 \times 2 \)[/tex] matrix with a [tex]\( 2 \times 3 \)[/tex] matrix, resulting in a [tex]\( 2 \times 3 \)[/tex] matrix (the same dimensions as [tex]\( A \)[/tex]).
The [tex]\( 2 \times 2 \)[/tex] identity matrix [tex]\( I_m \)[/tex] is:
[tex]\[ I_m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
Thus, the appropriate identity matrix [tex]\( I_m \)[/tex] is:
[tex]\[ I_m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
So, [tex]\( I_m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.