Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure! Let's solve this step-by-step.
1. Identify the Parameters:
- Initial investment, [tex]\( P = \$100,000 \)[/tex]
- Future value, [tex]\( A = \$1,000,000 \)[/tex]
- Interest rate, [tex]\( r = 7.5\% \)[/tex] or [tex]\( 0.075 \)[/tex]
- We are using the formula for continuous compounding.
2. Use the Continuous Compounding Formula:
The formula for continuous compounding is:
[tex]\[ A = P e^{rt} \][/tex]
3. Rearrange to Solve for [tex]\( t \)[/tex]:
We need to find the time [tex]\( t \)[/tex], so we rearrange the formula to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(A/P)}{r} \][/tex]
4. Calculate the Natural Logarithm:
Substitute the values:
[tex]\[ t = \frac{\ln(1,000,000 / 100,000)}{0.075} \][/tex]
Simplify inside the logarithm:
[tex]\[ t = \frac{\ln(10)}{0.075} \][/tex]
5. Evaluate [tex]\( \ln(10) \)[/tex]:
The natural logarithm of 10 is approximately 2.302585.
6. Complete the Calculation:
[tex]\[ t = \frac{2.302585}{0.075} \][/tex]
[tex]\[ t \approx 30.701134573253945 \][/tex]
7. Round to the Nearest Year:
The nearest integer value of 30.701134573253945 is 31.
Therefore, it will take approximately 31 years for the money to grow from \[tex]$100,000 to \$[/tex]1,000,000 at an interest rate of 7.5% compounded continuously.
Final Answer:
It will take approximately 31 years.
1. Identify the Parameters:
- Initial investment, [tex]\( P = \$100,000 \)[/tex]
- Future value, [tex]\( A = \$1,000,000 \)[/tex]
- Interest rate, [tex]\( r = 7.5\% \)[/tex] or [tex]\( 0.075 \)[/tex]
- We are using the formula for continuous compounding.
2. Use the Continuous Compounding Formula:
The formula for continuous compounding is:
[tex]\[ A = P e^{rt} \][/tex]
3. Rearrange to Solve for [tex]\( t \)[/tex]:
We need to find the time [tex]\( t \)[/tex], so we rearrange the formula to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(A/P)}{r} \][/tex]
4. Calculate the Natural Logarithm:
Substitute the values:
[tex]\[ t = \frac{\ln(1,000,000 / 100,000)}{0.075} \][/tex]
Simplify inside the logarithm:
[tex]\[ t = \frac{\ln(10)}{0.075} \][/tex]
5. Evaluate [tex]\( \ln(10) \)[/tex]:
The natural logarithm of 10 is approximately 2.302585.
6. Complete the Calculation:
[tex]\[ t = \frac{2.302585}{0.075} \][/tex]
[tex]\[ t \approx 30.701134573253945 \][/tex]
7. Round to the Nearest Year:
The nearest integer value of 30.701134573253945 is 31.
Therefore, it will take approximately 31 years for the money to grow from \[tex]$100,000 to \$[/tex]1,000,000 at an interest rate of 7.5% compounded continuously.
Final Answer:
It will take approximately 31 years.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.