Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the equation [tex]\(\log_2 t + \log_2 (t + 3) = 2\)[/tex], we can follow these steps:
1. Combine the logarithms:
Using the property of logarithms [tex]\(\log_b (a) + \log_b (c) = \log_b (a \cdot c)\)[/tex], we can rewrite the given equation:
[tex]\[ \log_2 t + \log_2 (t + 3) = \log_2 [t(t + 3)] \][/tex]
Therefore, the equation becomes:
[tex]\[ \log_2 [t(t + 3)] = 2 \][/tex]
2. Rewrite the equation in exponential form:
Since [tex]\(\log_2 [t(t + 3)] = 2\)[/tex], we can write:
[tex]\[ t(t + 3) = 2^2 \][/tex]
Thus:
[tex]\[ t(t + 3) = 4 \][/tex]
3. Form a quadratic equation:
To solve this, expand and rearrange:
[tex]\[ t^2 + 3t - 4 = 0 \][/tex]
4. Solve the quadratic equation:
The quadratic formula [tex]\(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex] can be used, where [tex]\(a = 1\)[/tex], [tex]\(b = 3\)[/tex], and [tex]\(c = -4\)[/tex].
- Calculate the discriminant:
[tex]\[ \text{discriminant} = b^2 - 4ac = 3^2 - 4(1)(-4) = 9 + 16 = 25 \][/tex]
- Find the two solutions:
[tex]\[ t = \frac{-3 \pm \sqrt{25}}{2 \times 1} = \frac{-3 \pm 5}{2} \][/tex]
Therefore:
[tex]\[ t_1 = \frac{-3 + 5}{2} = \frac{2}{2} = 1 \][/tex]
[tex]\[ t_2 = \frac{-3 - 5}{2} = \frac{-8}{2} = -4 \][/tex]
5. Check the solutions:
Since [tex]\(t\)[/tex] must be a positive number for the logarithms to be defined, we discard [tex]\(t = -4\)[/tex] because the logarithm of a negative number is not defined.
Hence, the only valid solution is [tex]\(t = 1\)[/tex].
Solution set:
[tex]\[ \{1\} \][/tex]
So, the exact solution set for the equation [tex]\(\log_2 t + \log_2 (t + 3) = 2\)[/tex] is [tex]\(\{1\}\)[/tex].
1. Combine the logarithms:
Using the property of logarithms [tex]\(\log_b (a) + \log_b (c) = \log_b (a \cdot c)\)[/tex], we can rewrite the given equation:
[tex]\[ \log_2 t + \log_2 (t + 3) = \log_2 [t(t + 3)] \][/tex]
Therefore, the equation becomes:
[tex]\[ \log_2 [t(t + 3)] = 2 \][/tex]
2. Rewrite the equation in exponential form:
Since [tex]\(\log_2 [t(t + 3)] = 2\)[/tex], we can write:
[tex]\[ t(t + 3) = 2^2 \][/tex]
Thus:
[tex]\[ t(t + 3) = 4 \][/tex]
3. Form a quadratic equation:
To solve this, expand and rearrange:
[tex]\[ t^2 + 3t - 4 = 0 \][/tex]
4. Solve the quadratic equation:
The quadratic formula [tex]\(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex] can be used, where [tex]\(a = 1\)[/tex], [tex]\(b = 3\)[/tex], and [tex]\(c = -4\)[/tex].
- Calculate the discriminant:
[tex]\[ \text{discriminant} = b^2 - 4ac = 3^2 - 4(1)(-4) = 9 + 16 = 25 \][/tex]
- Find the two solutions:
[tex]\[ t = \frac{-3 \pm \sqrt{25}}{2 \times 1} = \frac{-3 \pm 5}{2} \][/tex]
Therefore:
[tex]\[ t_1 = \frac{-3 + 5}{2} = \frac{2}{2} = 1 \][/tex]
[tex]\[ t_2 = \frac{-3 - 5}{2} = \frac{-8}{2} = -4 \][/tex]
5. Check the solutions:
Since [tex]\(t\)[/tex] must be a positive number for the logarithms to be defined, we discard [tex]\(t = -4\)[/tex] because the logarithm of a negative number is not defined.
Hence, the only valid solution is [tex]\(t = 1\)[/tex].
Solution set:
[tex]\[ \{1\} \][/tex]
So, the exact solution set for the equation [tex]\(\log_2 t + \log_2 (t + 3) = 2\)[/tex] is [tex]\(\{1\}\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.