Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine how many roots the polynomial [tex]\( f(x) = \left(x^2 - 1\right)(x + 2)(x - 1)^2 \)[/tex] has, we need to analyze the factors of the polynomial and find the roots.
1. Factor Analysis:
- [tex]\( x^2 - 1 \)[/tex] can be factored as [tex]\( (x - 1)(x + 1) \)[/tex].
- [tex]\( x + 2 \)[/tex] remains unchanged.
- [tex]\( (x - 1)^2 \)[/tex].
So, the polynomial can be written as:
[tex]\[ f(x) = (x - 1)(x + 1)(x + 2)(x - 1)^2 \][/tex]
2. Finding the Roots:
- Set each factor equal to zero and solve for [tex]\( x \)[/tex].
[tex]\[ x - 1 = 0 \Rightarrow x = 1 \][/tex]
[tex]\( x = 1 \)[/tex] appears from both [tex]\( (x - 1) \)[/tex] and [tex]\( (x - 1)^2 \)[/tex], so it has a multiplicity.
[tex]\[ x + 1 = 0 \Rightarrow x = -1 \][/tex]
[tex]\[ x + 2 = 0 \Rightarrow x = -2 \][/tex]
[tex]\( (x - 1)^2 = 0 \Rightarrow x = 1 \)[/tex]. This confirms [tex]\( x = 1 \)[/tex] with a multiplicity of 2.
3. Counting the Roots:
- The roots are: [tex]\( 1 \)[/tex] (from [tex]\( (x - 1) \)[/tex] and [tex]\( (x - 1)^2 \)[/tex]), [tex]\( -1 \)[/tex] (from [tex]\( x + 1 \)[/tex]), and [tex]\( -2 \)[/tex] (from [tex]\( x + 2 \)[/tex]).
- The multiplicity of [tex]\( 1 \)[/tex] is 2 due to [tex]\( (x - 1)(x - 1)^2 \)[/tex].
The roots can be listed with their multiplicities:
[tex]\[ x = 1, -1, -2, 1 \][/tex] (counting [tex]\( x = 1 \)[/tex] twice due to multiplicity).
Therefore, the total number of roots, counting multiplicities, is 5.
The correct answer is:
[tex]\[ 5 \][/tex]
1. Factor Analysis:
- [tex]\( x^2 - 1 \)[/tex] can be factored as [tex]\( (x - 1)(x + 1) \)[/tex].
- [tex]\( x + 2 \)[/tex] remains unchanged.
- [tex]\( (x - 1)^2 \)[/tex].
So, the polynomial can be written as:
[tex]\[ f(x) = (x - 1)(x + 1)(x + 2)(x - 1)^2 \][/tex]
2. Finding the Roots:
- Set each factor equal to zero and solve for [tex]\( x \)[/tex].
[tex]\[ x - 1 = 0 \Rightarrow x = 1 \][/tex]
[tex]\( x = 1 \)[/tex] appears from both [tex]\( (x - 1) \)[/tex] and [tex]\( (x - 1)^2 \)[/tex], so it has a multiplicity.
[tex]\[ x + 1 = 0 \Rightarrow x = -1 \][/tex]
[tex]\[ x + 2 = 0 \Rightarrow x = -2 \][/tex]
[tex]\( (x - 1)^2 = 0 \Rightarrow x = 1 \)[/tex]. This confirms [tex]\( x = 1 \)[/tex] with a multiplicity of 2.
3. Counting the Roots:
- The roots are: [tex]\( 1 \)[/tex] (from [tex]\( (x - 1) \)[/tex] and [tex]\( (x - 1)^2 \)[/tex]), [tex]\( -1 \)[/tex] (from [tex]\( x + 1 \)[/tex]), and [tex]\( -2 \)[/tex] (from [tex]\( x + 2 \)[/tex]).
- The multiplicity of [tex]\( 1 \)[/tex] is 2 due to [tex]\( (x - 1)(x - 1)^2 \)[/tex].
The roots can be listed with their multiplicities:
[tex]\[ x = 1, -1, -2, 1 \][/tex] (counting [tex]\( x = 1 \)[/tex] twice due to multiplicity).
Therefore, the total number of roots, counting multiplicities, is 5.
The correct answer is:
[tex]\[ 5 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.