Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

7. Find the inverse of the following matrices using the Gauss-Jordan method (row-operation method).

a. [tex]\left(\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right)[/tex]

b. [tex]\left(\begin{array}{cc}-3 & -5 \\ 6 & 8\end{array}\right)[/tex]

c. [tex]\left(\begin{array}{ccc}1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1\end{array}\right)[/tex]

d. [tex]\left(\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 3 \\ 2 & 3 & 4\end{array}\right)[/tex]


Sagot :

To find the inverse of a matrix using the Gauss-Jordan method (also known as row-reduction), we can follow these steps:

1. Form the augmented matrix [A | I], where A is the original matrix and I is the identity matrix of the same size.
2. Perform row operations to transform the matrix A into the identity matrix I.
3. The resulting matrix on the right-hand side of the augmented matrix will be the inverse [tex]\( A^{-1} \)[/tex].

Let's perform the Gauss-Jordan method on each of the given matrices.

### Part (a)

Matrix [tex]\( \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \)[/tex]:

1. Set up the augmented matrix:
[tex]\[ \left(\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 2 & 5 & 0 & 1 \end{array}\right) \][/tex]

2. Perform row operations:
- Row 2: [tex]\(R_2 \rightarrow R_2 - 2R_1 \)[/tex]
[tex]\[ \left(\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{array}\right) \][/tex]
- Row 1: [tex]\(R_1 \rightarrow R_1 - 2R_2 \)[/tex]
[tex]\[ \left(\begin{array}{cc|cc} 1 & 0 & 5 & -2 \\ 0 & 1 & -2 & 1 \end{array}\right) \][/tex]

3. The inverse is:
[tex]\[ \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix} \][/tex]

### Part (b)

Matrix [tex]\( \begin{pmatrix} -3 & -5 \\ 6 & 8 \end{pmatrix} \)[/tex]:

1. Set up the augmented matrix:
[tex]\[ \left(\begin{array}{cc|cc} -3 & -5 & 1 & 0 \\ 6 & 8 & 0 & 1 \end{array}\right) \][/tex]

2. Perform row operations:
- Row 1: [tex]\(R_1 \rightarrow -\frac{1}{3} R_1\)[/tex]:
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 6 & 8 & 0 & 1 \end{array}\right) \][/tex]
- Row 2: [tex]\(R_2 \rightarrow R_2 - 6R_1 \)[/tex]
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 0 & -2 & 2 & 1 \end{array}\right) \][/tex]
- Row 2: [tex]\(R_2 \rightarrow -\frac{1}{2} R_2\)[/tex]
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 0 & 1 & -1 & -\frac{1}{2} \end{array}\right) \][/tex]
- Row 1: [tex]\(R_1 \rightarrow R_1 - \frac{5}{3}R_2 \)[/tex]
[tex]\[ \left(\begin{array}{cc|cc} 1 & 0 & \frac{4}{3} & \frac{5}{6} \\ 0 & 1 & -1 & -\frac{1}{2} \end{array}\right) \][/tex]

3. The inverse is:
[tex]\[ \begin{pmatrix} \frac{4}{3} & \frac{5}{6} \\ -1 & -\frac{1}{2} \end{pmatrix} \][/tex]

### Part (c)

Matrix [tex]\( \begin{pmatrix} 1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1 \end{pmatrix} \)[/tex]:

1. Set up the augmented matrix:
[tex]\[ \left(\begin{array}{ccc|ccc} 1 & -2 & 3 & 1 & 0 & 0 \\ 0 & -1 & 4 & 0 & 1 & 0 \\ -2 & 2 & 1 & 0 & 0 & 1 \end{array}\right) \][/tex]

2. Perform row operations to transform the left matrix to identity:
[tex]\[ \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & -9 & 8 & -5 \\ 0 & 1 & 0 & -8 & 7 & -4 \\ 0 & 0 & 1 & -2 & 2 & -1 \end{array}\right) \][/tex]

3. The inverse is:
[tex]\[ \begin{pmatrix} -9 & 8 & -5 \\ -8 & 7 & -4 \\ -2 & 2 & -1 \end{pmatrix} \][/tex]

### Part (d)

Matrix [tex]\( \begin{pmatrix} 3 & 2 & 6 \\ 1 & 1 & 3 \\ 2 & 3 & 4 \end{pmatrix} \)[/tex]:

1. Set up the augmented matrix:
[tex]\[ \left(\begin{array}{ccc|ccc} 3 & 2 & 6 & 1 & 0 & 0 \\ 1 & 1 & 3 & 0 & 1 & 0 \\ 2 & 3 & 4 & 0 & 0 & 1 \end{array}\right) \][/tex]

2. Perform row operations to transform the left matrix to identity:
[tex]\[ \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & -2 & 0 \\ 0 & 1 & 0 & -\frac{2}{5} & 0 & \frac{3}{5} \\ 0 & 0 & 1 & -\frac{1}{5} & 1 & -\frac{1}{5} \end{array}\right) \][/tex]

3. The inverse is:
[tex]\[ \begin{pmatrix} 1 & -2 & 0 \\ -\frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{1}{5} & 1 & -\frac{1}{5} \end{pmatrix} \][/tex]

These are the inverses of the provided matrices using the Gauss-Jordan method.