Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve for the height [tex]\( h \)[/tex] of the wall using the [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle theorem, we need to understand the properties of this special type of right triangle.
In a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle, the legs are of equal length, and the hypotenuse is [tex]\( \sqrt{2} \)[/tex] times the length of each leg. Let's denote the length of each leg by [tex]\( x \)[/tex].
Given the hypotenuse of the triangle is [tex]\( 6.5 \times \sqrt{2} \)[/tex] feet, we can use this relationship to find [tex]\( x \)[/tex], which represents the height of the triangle (and wall):
[tex]\[ \text{Hypotenuse} = x \times \sqrt{2} \][/tex]
Given:
[tex]\[ 6.5 \times \sqrt{2} = x \times \sqrt{2} \][/tex]
By equating the expressions for the hypotenuse, we can solve for [tex]\( x \)[/tex]:
[tex]\[ x \times \sqrt{2} = 6.5 \times \sqrt{2} \][/tex]
Since both sides have [tex]\( \sqrt{2} \)[/tex], we can divide by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ x = 6.5 \][/tex]
Therefore, the height [tex]\( h \)[/tex] of the wall is:
[tex]\[ h = 6.5 \text{ feet} \][/tex]
In a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle, the legs are of equal length, and the hypotenuse is [tex]\( \sqrt{2} \)[/tex] times the length of each leg. Let's denote the length of each leg by [tex]\( x \)[/tex].
Given the hypotenuse of the triangle is [tex]\( 6.5 \times \sqrt{2} \)[/tex] feet, we can use this relationship to find [tex]\( x \)[/tex], which represents the height of the triangle (and wall):
[tex]\[ \text{Hypotenuse} = x \times \sqrt{2} \][/tex]
Given:
[tex]\[ 6.5 \times \sqrt{2} = x \times \sqrt{2} \][/tex]
By equating the expressions for the hypotenuse, we can solve for [tex]\( x \)[/tex]:
[tex]\[ x \times \sqrt{2} = 6.5 \times \sqrt{2} \][/tex]
Since both sides have [tex]\( \sqrt{2} \)[/tex], we can divide by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ x = 6.5 \][/tex]
Therefore, the height [tex]\( h \)[/tex] of the wall is:
[tex]\[ h = 6.5 \text{ feet} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.