At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve for which term of the sequence given by [tex]\( I_n = n^2 - n \)[/tex] equals 72, we need to find the value of [tex]\( n \)[/tex] that satisfies the equation [tex]\( n^2 - n = 72 \)[/tex].
1. Set Up the Equation:
We start by writing down the equation representing the sequence:
[tex]\[ n^2 - n = 72 \][/tex]
2. Form a Quadratic Equation:
To solve for [tex]\( n \)[/tex], we rearrange the equation into standard quadratic form:
[tex]\[ n^2 - n - 72 = 0 \][/tex]
3. Solve the Quadratic Equation:
We can solve this quadratic equation, [tex]\( n^2 - n - 72 = 0 \)[/tex], by factoring, completing the square, or using the quadratic formula, [tex]\( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]. Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -1 \)[/tex], and [tex]\( c = -72 \)[/tex].
4. Quadratic Formula Application:
Plugging in the values into the quadratic formula, we get:
[tex]\[ n = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-72)}}{2 \cdot 1} \][/tex]
Simplifying inside the square root:
[tex]\[ n = \frac{1 \pm \sqrt{1 + 288}}{2} \][/tex]
[tex]\[ n = \frac{1 \pm \sqrt{289}}{2} \][/tex]
Since [tex]\( \sqrt{289} = 17 \)[/tex]:
[tex]\[ n = \frac{1 \pm 17}{2} \][/tex]
5. Calculating the Roots:
This gives us two potential solutions for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{1 + 17}{2} = \frac{18}{2} = 9 \][/tex]
[tex]\[ n = \frac{1 - 17}{2} = \frac{-16}{2} = -8 \][/tex]
6. Verify the Solutions:
The quadratic equation yields two solutions: [tex]\( n = 9 \)[/tex] and [tex]\( n = -8 \)[/tex].
Therefore, the terms of the sequence [tex]\( I_n = n^2 - n \)[/tex] that produce the number 72 are for [tex]\( n = 9 \)[/tex] and [tex]\( n = -8 \)[/tex].
1. Set Up the Equation:
We start by writing down the equation representing the sequence:
[tex]\[ n^2 - n = 72 \][/tex]
2. Form a Quadratic Equation:
To solve for [tex]\( n \)[/tex], we rearrange the equation into standard quadratic form:
[tex]\[ n^2 - n - 72 = 0 \][/tex]
3. Solve the Quadratic Equation:
We can solve this quadratic equation, [tex]\( n^2 - n - 72 = 0 \)[/tex], by factoring, completing the square, or using the quadratic formula, [tex]\( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]. Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -1 \)[/tex], and [tex]\( c = -72 \)[/tex].
4. Quadratic Formula Application:
Plugging in the values into the quadratic formula, we get:
[tex]\[ n = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-72)}}{2 \cdot 1} \][/tex]
Simplifying inside the square root:
[tex]\[ n = \frac{1 \pm \sqrt{1 + 288}}{2} \][/tex]
[tex]\[ n = \frac{1 \pm \sqrt{289}}{2} \][/tex]
Since [tex]\( \sqrt{289} = 17 \)[/tex]:
[tex]\[ n = \frac{1 \pm 17}{2} \][/tex]
5. Calculating the Roots:
This gives us two potential solutions for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{1 + 17}{2} = \frac{18}{2} = 9 \][/tex]
[tex]\[ n = \frac{1 - 17}{2} = \frac{-16}{2} = -8 \][/tex]
6. Verify the Solutions:
The quadratic equation yields two solutions: [tex]\( n = 9 \)[/tex] and [tex]\( n = -8 \)[/tex].
Therefore, the terms of the sequence [tex]\( I_n = n^2 - n \)[/tex] that produce the number 72 are for [tex]\( n = 9 \)[/tex] and [tex]\( n = -8 \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.