At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! To determine the optimal daily production mix given the constraints and the objective function, we'll follow these steps.
Objective:
Minimize [tex]\( z = 4x_1 + x_2 \)[/tex]
Subject to constraints:
1. [tex]\( 3x_1 + x_2 \leq 30 \)[/tex]
2. [tex]\( 4x_1 + 3x_2 \geq 60 \)[/tex]
3. [tex]\( x_1 + 2x_2 \leq 40 \)[/tex]
4. [tex]\( x_1, x_2 \geq 0 \)[/tex]
### Step-by-Step Solution:
1. Convert all inequalities to standard form:
To handle different forms (≥ or ≤), we transform them to standard "≤" form by multiplying inequalities with a negative sign if necessary.
- The first constraint already is a "≤" type:
[tex]\[ 3x_1 + x_2 \leq 30 \][/tex]
- The seconda constraint can be converted to a "≤":
[tex]\[ 4x_1 + 3x_2 \geq 60 \quad \text{which becomes} \quad -4x_1 - 3x_2 \leq -60 \][/tex]
- The third constraint is of "≤" type:
[tex]\[ x_1 + 2x_2 \leq 40 \][/tex]
2. Bounds:
We need to add the non-negative constraints for the variables:
[tex]\[ x_1 \geq 0, \quad x_2 \geq 0 \][/tex]
3. Set up the Linear Programming (LP) problem:
Now, we have the LP problem as:
[tex]\[ \begin{aligned} \text{Minimize} \quad & z = 4x_1 + x_2 \\ \text{subject to} \quad & 3x_1 + x_2 \leq 30, \\ & -4x_1 - 3x_2 \leq -60, \\ & x_1 + 2x_2 \leq 40, \\ & x_1 \geq 0, \\ & x_2 \geq 0. \end{aligned} \][/tex]
4. Solving the LP problem:
The optimal solution to this problem is [tex]\( x_1 = 0 \)[/tex] and [tex]\( x_2 = 20 \)[/tex].
The value of the objective function at this point is:
[tex]\[ z = 4(0) + 1(20) = 20 \][/tex]
### Result:
The optimal daily production mix is:
- [tex]\( x_1 = 0 \)[/tex]
- [tex]\( x_2 = 20 \)[/tex]
This gives us a minimized cost of [tex]\( z = 20 \)[/tex].
So, the minimum value of the objective function [tex]\( z \)[/tex] is 20, achieved when [tex]\( x_1 = 0 \)[/tex] and [tex]\( x_2 = 20 \)[/tex].
Objective:
Minimize [tex]\( z = 4x_1 + x_2 \)[/tex]
Subject to constraints:
1. [tex]\( 3x_1 + x_2 \leq 30 \)[/tex]
2. [tex]\( 4x_1 + 3x_2 \geq 60 \)[/tex]
3. [tex]\( x_1 + 2x_2 \leq 40 \)[/tex]
4. [tex]\( x_1, x_2 \geq 0 \)[/tex]
### Step-by-Step Solution:
1. Convert all inequalities to standard form:
To handle different forms (≥ or ≤), we transform them to standard "≤" form by multiplying inequalities with a negative sign if necessary.
- The first constraint already is a "≤" type:
[tex]\[ 3x_1 + x_2 \leq 30 \][/tex]
- The seconda constraint can be converted to a "≤":
[tex]\[ 4x_1 + 3x_2 \geq 60 \quad \text{which becomes} \quad -4x_1 - 3x_2 \leq -60 \][/tex]
- The third constraint is of "≤" type:
[tex]\[ x_1 + 2x_2 \leq 40 \][/tex]
2. Bounds:
We need to add the non-negative constraints for the variables:
[tex]\[ x_1 \geq 0, \quad x_2 \geq 0 \][/tex]
3. Set up the Linear Programming (LP) problem:
Now, we have the LP problem as:
[tex]\[ \begin{aligned} \text{Minimize} \quad & z = 4x_1 + x_2 \\ \text{subject to} \quad & 3x_1 + x_2 \leq 30, \\ & -4x_1 - 3x_2 \leq -60, \\ & x_1 + 2x_2 \leq 40, \\ & x_1 \geq 0, \\ & x_2 \geq 0. \end{aligned} \][/tex]
4. Solving the LP problem:
The optimal solution to this problem is [tex]\( x_1 = 0 \)[/tex] and [tex]\( x_2 = 20 \)[/tex].
The value of the objective function at this point is:
[tex]\[ z = 4(0) + 1(20) = 20 \][/tex]
### Result:
The optimal daily production mix is:
- [tex]\( x_1 = 0 \)[/tex]
- [tex]\( x_2 = 20 \)[/tex]
This gives us a minimized cost of [tex]\( z = 20 \)[/tex].
So, the minimum value of the objective function [tex]\( z \)[/tex] is 20, achieved when [tex]\( x_1 = 0 \)[/tex] and [tex]\( x_2 = 20 \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.