Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Line [tex]$GH$[/tex] passes through points [tex]$(2,5)$[/tex] and [tex][tex]$(6,9)$[/tex][/tex]. Which equation represents line [tex]$GH$[/tex]?

A. [tex]y = x + 3[/tex]
B. [tex]y = x - 3[/tex]
C. [tex]y = 3x + 3[/tex]
D. [tex]y = 3x - 3[/tex]


Sagot :

To find the equation of the line that passes through the points [tex]\( (2,5) \)[/tex] and [tex]\( (6,9) \)[/tex], we need to determine the slope and the y-intercept of the line.

### Step 1: Calculate the slope
The slope [tex]\( m \)[/tex] of a line passing through two points [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Substituting the coordinates [tex]\( (2,5) \)[/tex] and [tex]\( (6,9) \)[/tex] into the formula:
[tex]\[ m = \frac{9 - 5}{6 - 2} = \frac{4}{4} = 1 \][/tex]

### Step 2: Calculate the y-intercept
The equation of the line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.

We already know that [tex]\( m = 1 \)[/tex]. To find [tex]\( b \)[/tex], we can use one of the given points. Let's use the point [tex]\( (2, 5) \)[/tex].

Substitute [tex]\( m = 1 \)[/tex], [tex]\( x = 2 \)[/tex], and [tex]\( y = 5 \)[/tex] into the equation:
[tex]\[ 5 = 1(2) + b \][/tex]
[tex]\[ 5 = 2 + b \][/tex]
Solving for [tex]\( b \)[/tex]:
[tex]\[ b = 5 - 2 = 3 \][/tex]

### Step 3: Write the equation
Now that we have the slope [tex]\( m = 1 \)[/tex] and the y-intercept [tex]\( b = 3 \)[/tex], we can write the equation of the line:
[tex]\[ y = 1x + 3 \][/tex]

### Step 4: Match with the given options
We compare this equation with the provided choices:
- [tex]\( y = x + 3 \)[/tex]
- [tex]\( y = x - 3 \)[/tex]
- [tex]\( y = 3x + 3 \)[/tex]
- [tex]\( y = 3x - 3 \)[/tex]

The correct equation [tex]\( y = x + 3 \)[/tex] matches the first option.

Therefore, the equation that represents the line GH is:
[tex]\[ \boxed{y = x + 3} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.