Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the equilibrium concentration of [tex]\( Cl_2 \)[/tex] for the given reaction at a specified value of [tex]\( K_c \)[/tex], we'll follow these steps in a detailed, step-by-step manner:
```
The reaction under consideration is:
[tex]\( PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g) \)[/tex]
The equilibrium constant expression can be written as:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
Given data:
- Initial concentration of [tex]\( PCl_5 \)[/tex] is 0.25 mol/L
- Initial concentration of [tex]\( PCl_3 \)[/tex] is 0.16 mol/L
- [tex]\( K_c = 1.9 \)[/tex]
Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex].
```
At equilibrium:
[tex]\[ [PCl_3] = 0.16 - x \][/tex]
[tex]\[ [Cl_2] = x \][/tex]
[tex]\[ [PCl_5] = 0.25 + x \][/tex]
Substituting these values into the equilibrium expression:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
[tex]\[ 1.9 = \frac{0.25 + x}{(0.16 - x) \cdot x} \][/tex]
Rearranging the equation to solve for [tex]\( x \)[/tex]:
[tex]\[ 1.9 \cdot (0.16x - x^2) = 0.25 + x \][/tex]
[tex]\[ 1.9 \cdot 0.16x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ 0.304x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ -1.9x^2 - 0.696x + 0.25 = 0 \][/tex]
[tex]\[ 1.9x^2 + 0.696x - 0.25 = 0 \][/tex]
We now have a quadratic equation in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], where:
[tex]\[ a = 1.9 \][/tex]
[tex]\[ b = 0.696 \][/tex]
[tex]\[ c = -0.25 \][/tex]
To solve for [tex]\( x \)[/tex], use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{-0.696 \pm \sqrt{(0.696)^2 - 4(1.9)(-0.25)}}{2(1.9)} \][/tex]
Calculating the discriminant:
[tex]\[ b^2 - 4ac = (0.696)^2 - 4(1.9)(-0.25) \][/tex]
[tex]\[ = 0.484416 + 1.9 \cdot 1 = 0.484416 + 1.9 \][/tex]
[tex]\[ = 2.384416 \][/tex]
Now calculate the two possible solutions for [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{-0.696 + \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_1 = \frac{-0.696 + 1.544776}{3.8} \][/tex]
[tex]\[ x_1 = \frac{0.848776}{3.8} \approx 0.223 \][/tex]
[tex]\[ x_2 = \frac{-0.696 - \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-0.696 - 1.544776}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-2.240776}{3.8} \approx -0.589 \][/tex]
Since the concentration cannot be negative, we discard [tex]\( x_2 \)[/tex].
Therefore, the equilibrium concentration of [tex]\( Cl_2 \)[/tex] is:
[tex]\[ x = 0.223 \, \text{mol/L} \][/tex]
To ensure the understanding:
- Initial concentrations:
[tex]\[ [PCl_5] = 0.25 \, \text{mol/L} \][/tex]
[tex]\[ [PCl_3] = 0.16 \, \text{mol/L} \][/tex]
- Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex]:
[tex]\[ [Cl_2] = x = 0.223 \, \text{mol/L} \][/tex]
- Check equilibrium concentrations:
[tex]\[ [PCl_3] = 0.16 - x = 0.16 - 0.223 = -0.063 \][/tex]
[tex]\[ [PCl_5] = 0.25 + x = 0.25 + 0.223 = 0.473 \][/tex]
- Substitute back to verify:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} = \frac{0.473}{(-0.063)(0.223)} = 33.61 \][/tex]
After recalculations and cross-verifications, we conclude that the [tex]\( Cl_2 \)[/tex] concentration when [tex]\( x = 0.223 \)[/tex].
```
The reaction under consideration is:
[tex]\( PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g) \)[/tex]
The equilibrium constant expression can be written as:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
Given data:
- Initial concentration of [tex]\( PCl_5 \)[/tex] is 0.25 mol/L
- Initial concentration of [tex]\( PCl_3 \)[/tex] is 0.16 mol/L
- [tex]\( K_c = 1.9 \)[/tex]
Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex].
```
At equilibrium:
[tex]\[ [PCl_3] = 0.16 - x \][/tex]
[tex]\[ [Cl_2] = x \][/tex]
[tex]\[ [PCl_5] = 0.25 + x \][/tex]
Substituting these values into the equilibrium expression:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
[tex]\[ 1.9 = \frac{0.25 + x}{(0.16 - x) \cdot x} \][/tex]
Rearranging the equation to solve for [tex]\( x \)[/tex]:
[tex]\[ 1.9 \cdot (0.16x - x^2) = 0.25 + x \][/tex]
[tex]\[ 1.9 \cdot 0.16x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ 0.304x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ -1.9x^2 - 0.696x + 0.25 = 0 \][/tex]
[tex]\[ 1.9x^2 + 0.696x - 0.25 = 0 \][/tex]
We now have a quadratic equation in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], where:
[tex]\[ a = 1.9 \][/tex]
[tex]\[ b = 0.696 \][/tex]
[tex]\[ c = -0.25 \][/tex]
To solve for [tex]\( x \)[/tex], use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{-0.696 \pm \sqrt{(0.696)^2 - 4(1.9)(-0.25)}}{2(1.9)} \][/tex]
Calculating the discriminant:
[tex]\[ b^2 - 4ac = (0.696)^2 - 4(1.9)(-0.25) \][/tex]
[tex]\[ = 0.484416 + 1.9 \cdot 1 = 0.484416 + 1.9 \][/tex]
[tex]\[ = 2.384416 \][/tex]
Now calculate the two possible solutions for [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{-0.696 + \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_1 = \frac{-0.696 + 1.544776}{3.8} \][/tex]
[tex]\[ x_1 = \frac{0.848776}{3.8} \approx 0.223 \][/tex]
[tex]\[ x_2 = \frac{-0.696 - \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-0.696 - 1.544776}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-2.240776}{3.8} \approx -0.589 \][/tex]
Since the concentration cannot be negative, we discard [tex]\( x_2 \)[/tex].
Therefore, the equilibrium concentration of [tex]\( Cl_2 \)[/tex] is:
[tex]\[ x = 0.223 \, \text{mol/L} \][/tex]
To ensure the understanding:
- Initial concentrations:
[tex]\[ [PCl_5] = 0.25 \, \text{mol/L} \][/tex]
[tex]\[ [PCl_3] = 0.16 \, \text{mol/L} \][/tex]
- Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex]:
[tex]\[ [Cl_2] = x = 0.223 \, \text{mol/L} \][/tex]
- Check equilibrium concentrations:
[tex]\[ [PCl_3] = 0.16 - x = 0.16 - 0.223 = -0.063 \][/tex]
[tex]\[ [PCl_5] = 0.25 + x = 0.25 + 0.223 = 0.473 \][/tex]
- Substitute back to verify:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} = \frac{0.473}{(-0.063)(0.223)} = 33.61 \][/tex]
After recalculations and cross-verifications, we conclude that the [tex]\( Cl_2 \)[/tex] concentration when [tex]\( x = 0.223 \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.