Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's work through this step-by-step to find the value of the equilibrium constant [tex]\( K_c \)[/tex] for the given reaction.
Given:
- Initial moles of [tex]\( N_2O \)[/tex]: 10.0 moles
- Volume of the container: [tex]\( 2.00 \, \text{dm}^3 \)[/tex]
- Moles of [tex]\( N_2O \)[/tex] remaining at equilibrium: 2.20 moles
The reaction is:
[tex]\[ 2 N_2O_{(g)} \rightleftharpoons 2 N_{2(g)} + O_{2(g)} \][/tex]
### Step 1: Calculate the change in moles of [tex]\( N_2O \)[/tex]
Initial moles of [tex]\( N_2O \)[/tex]: 10.0 moles
Equilibrium moles of [tex]\( N_2O \)[/tex]: 2.20 moles
Change in moles ([tex]\( \Delta N_2O \)[/tex]):
[tex]\[ \Delta N_2O = \text{Initial moles} - \text{Equilibrium moles} = 10.0 - 2.20 = 7.8 \, \text{moles} \][/tex]
### Step 2: Calculate moles of [tex]\( N_2 \)[/tex] and [tex]\( O_2 \)[/tex] produced
From the balanced reaction equation, we know that 2 moles of [tex]\( N_2O \)[/tex] decompose to produce 2 moles of [tex]\( N_2 \)[/tex] and 1 mole of [tex]\( O_2 \)[/tex].
Thus, moles of [tex]\( N_2 \)[/tex] produced ([tex]\( \Delta N_2 \)[/tex]) is equal to the change in moles of [tex]\( N_2O \)[/tex]:
[tex]\[ \Delta N_2 = 7.8 \, \text{moles} \][/tex]
Moles of [tex]\( O_2 \)[/tex] produced ([tex]\( \Delta O_2 \)[/tex]):
[tex]\[ \Delta O_2 = \frac{7.8}{2} = 3.9 \, \text{moles} \][/tex]
### Step 3: Calculate concentrations at equilibrium
The volume of the container is [tex]\( 2.00 \, \text{dm}^3 \)[/tex].
Concentration of [tex]\( N_2O \)[/tex] at equilibrium ([tex]\( [N_2O] \)[/tex]):
[tex]\[ [N_2O] = \frac{\text{Moles of } N_2O \text{ at equilibrium}}{\text{Volume}} = \frac{2.20}{2.00} = 1.1 \, \text{mol/dm}^3 \][/tex]
Concentration of [tex]\( N_2 \)[/tex] at equilibrium ([tex]\( [N_2] \)[/tex]):
[tex]\[ [N_2] = \frac{\Delta N_2}{\text{Volume}} = \frac{7.8}{2.00} = 3.9 \, \text{mol/dm}^3 \][/tex]
Concentration of [tex]\( O_2 \)[/tex] at equilibrium ([tex]\( [O_2] \)[/tex]):
[tex]\[ [O_2] = \frac{\Delta O_2}{\text{Volume}} = \frac{3.9}{2.00} = 1.95 \, \text{mol/dm}^3 \][/tex]
### Step 4: Write the expression for the equilibrium constant [tex]\( K_c \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] for the reaction
[tex]\[ 2 N_2O_{(g)} \rightleftharpoons 2 N_{2(g)} + O_{2(g)} \][/tex]
is given by:
[tex]\[ K_c = \frac{[N_2]^2 [O_2]}{[N_2O]^2} \][/tex]
### Step 5: Substitute the equilibrium concentrations into the [tex]\( K_c \)[/tex] expression
[tex]\[ K_c = \frac{(3.9)^2 \times 1.95}{(1.1)^2} \][/tex]
### Step 6: Compute the value of [tex]\( K_c \)[/tex]
[tex]\[ K_c = \frac{15.21 \times 1.95}{1.21} \][/tex]
[tex]\[ K_c = \frac{29.6595}{1.21} \][/tex]
[tex]\[ K_c = 24.511983471074373 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction is approximately 24.51.
Given:
- Initial moles of [tex]\( N_2O \)[/tex]: 10.0 moles
- Volume of the container: [tex]\( 2.00 \, \text{dm}^3 \)[/tex]
- Moles of [tex]\( N_2O \)[/tex] remaining at equilibrium: 2.20 moles
The reaction is:
[tex]\[ 2 N_2O_{(g)} \rightleftharpoons 2 N_{2(g)} + O_{2(g)} \][/tex]
### Step 1: Calculate the change in moles of [tex]\( N_2O \)[/tex]
Initial moles of [tex]\( N_2O \)[/tex]: 10.0 moles
Equilibrium moles of [tex]\( N_2O \)[/tex]: 2.20 moles
Change in moles ([tex]\( \Delta N_2O \)[/tex]):
[tex]\[ \Delta N_2O = \text{Initial moles} - \text{Equilibrium moles} = 10.0 - 2.20 = 7.8 \, \text{moles} \][/tex]
### Step 2: Calculate moles of [tex]\( N_2 \)[/tex] and [tex]\( O_2 \)[/tex] produced
From the balanced reaction equation, we know that 2 moles of [tex]\( N_2O \)[/tex] decompose to produce 2 moles of [tex]\( N_2 \)[/tex] and 1 mole of [tex]\( O_2 \)[/tex].
Thus, moles of [tex]\( N_2 \)[/tex] produced ([tex]\( \Delta N_2 \)[/tex]) is equal to the change in moles of [tex]\( N_2O \)[/tex]:
[tex]\[ \Delta N_2 = 7.8 \, \text{moles} \][/tex]
Moles of [tex]\( O_2 \)[/tex] produced ([tex]\( \Delta O_2 \)[/tex]):
[tex]\[ \Delta O_2 = \frac{7.8}{2} = 3.9 \, \text{moles} \][/tex]
### Step 3: Calculate concentrations at equilibrium
The volume of the container is [tex]\( 2.00 \, \text{dm}^3 \)[/tex].
Concentration of [tex]\( N_2O \)[/tex] at equilibrium ([tex]\( [N_2O] \)[/tex]):
[tex]\[ [N_2O] = \frac{\text{Moles of } N_2O \text{ at equilibrium}}{\text{Volume}} = \frac{2.20}{2.00} = 1.1 \, \text{mol/dm}^3 \][/tex]
Concentration of [tex]\( N_2 \)[/tex] at equilibrium ([tex]\( [N_2] \)[/tex]):
[tex]\[ [N_2] = \frac{\Delta N_2}{\text{Volume}} = \frac{7.8}{2.00} = 3.9 \, \text{mol/dm}^3 \][/tex]
Concentration of [tex]\( O_2 \)[/tex] at equilibrium ([tex]\( [O_2] \)[/tex]):
[tex]\[ [O_2] = \frac{\Delta O_2}{\text{Volume}} = \frac{3.9}{2.00} = 1.95 \, \text{mol/dm}^3 \][/tex]
### Step 4: Write the expression for the equilibrium constant [tex]\( K_c \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] for the reaction
[tex]\[ 2 N_2O_{(g)} \rightleftharpoons 2 N_{2(g)} + O_{2(g)} \][/tex]
is given by:
[tex]\[ K_c = \frac{[N_2]^2 [O_2]}{[N_2O]^2} \][/tex]
### Step 5: Substitute the equilibrium concentrations into the [tex]\( K_c \)[/tex] expression
[tex]\[ K_c = \frac{(3.9)^2 \times 1.95}{(1.1)^2} \][/tex]
### Step 6: Compute the value of [tex]\( K_c \)[/tex]
[tex]\[ K_c = \frac{15.21 \times 1.95}{1.21} \][/tex]
[tex]\[ K_c = \frac{29.6595}{1.21} \][/tex]
[tex]\[ K_c = 24.511983471074373 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction is approximately 24.51.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.