Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the height of a solid right pyramid with a square base, let's start with the formula for the volume of such a pyramid. The volume [tex]\( V \)[/tex] of a pyramid can be calculated using the following formula:
[tex]\[ V = \frac{1}{3} \times \text{base\_area} \times \text{height} \][/tex]
For a pyramid with a square base, the base area can be given by the square of the side length [tex]\( y \)[/tex]:
[tex]\[ \text{base\_area} = y^2 \][/tex]
Substituting the base area into the volume formula, we get:
[tex]\[ V = \frac{1}{3} \times y^2 \times \text{height} \][/tex]
Now, we need to isolate the height on one side of this equation. To do this, follow these steps:
1. Multiply both sides of the equation by 3 to eliminate the fraction:
[tex]\[ 3V = y^2 \times \text{height} \][/tex]
2. Divide both sides of the equation by [tex]\( y^2 \)[/tex] to solve for the height:
[tex]\[ \text{height} = \frac{3V}{y^2} \][/tex]
Thus, the expression that represents the height of the pyramid is:
[tex]\[ \boxed{\frac{3V}{y^2}} \][/tex] units
This shows that the correct expression for the height of the pyramid is [tex]\(\frac{3V}{y^2}\)[/tex] units.
[tex]\[ V = \frac{1}{3} \times \text{base\_area} \times \text{height} \][/tex]
For a pyramid with a square base, the base area can be given by the square of the side length [tex]\( y \)[/tex]:
[tex]\[ \text{base\_area} = y^2 \][/tex]
Substituting the base area into the volume formula, we get:
[tex]\[ V = \frac{1}{3} \times y^2 \times \text{height} \][/tex]
Now, we need to isolate the height on one side of this equation. To do this, follow these steps:
1. Multiply both sides of the equation by 3 to eliminate the fraction:
[tex]\[ 3V = y^2 \times \text{height} \][/tex]
2. Divide both sides of the equation by [tex]\( y^2 \)[/tex] to solve for the height:
[tex]\[ \text{height} = \frac{3V}{y^2} \][/tex]
Thus, the expression that represents the height of the pyramid is:
[tex]\[ \boxed{\frac{3V}{y^2}} \][/tex] units
This shows that the correct expression for the height of the pyramid is [tex]\(\frac{3V}{y^2}\)[/tex] units.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.