Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's go through the solution step-by-step as if we're working this out carefully.
1. Understanding the Circumference:
- The circumference [tex]\( C \)[/tex] of a circle is given by [tex]\( C = \pi d \)[/tex], where [tex]\( d \)[/tex] is the diameter.
- Since the diameter [tex]\( d \)[/tex] is twice the radius [tex]\( r \)[/tex], we can write the circumference as [tex]\( C = 2 \pi r \)[/tex].
2. Dividing the Circle into Sectors:
- If we draw central angles each with a measure of [tex]\( n^\circ \)[/tex], the number of such sectors can be determined as [tex]\( \frac{360^\circ}{n^\circ} \)[/tex].
3. Arc Length of Each Sector:
- The arc length of a sector is the portion of the circumference that corresponds to a single central angle. For a circle divided into [tex]\( \frac{360^\circ}{n^\circ} \)[/tex] sectors, the arc length is the circumference divided by the number of such sectors.
- Therefore, the arc length [tex]\( L \)[/tex] for each sector is [tex]\( \frac{2 \pi r}{\frac{360^\circ}{n^\circ}} = 2 \pi r \cdot \frac{n^\circ}{360^\circ} \)[/tex].
4. Simplifying the Expression:
- The expression for the arc length can be simplified as:
[tex]\[ L = 2 \pi r \cdot \frac{n}{360} \][/tex]
So, we see that the arc length of a sector with a central angle of [tex]\( n^\circ \)[/tex] is [tex]\( 2 \pi r \cdot \frac{n}{360} \)[/tex]. This can also be presented as:
[tex]\[ L = r \pi \cdot \frac{n}{180} \][/tex]
By rechecking the provided options, the best fit to complete the argument is:
A. [tex]\( \frac{\pi n r}{180} \)[/tex].
Hence, each sector's arc length formula translates correctly to [tex]\( \frac{\pi n r}{180} \)[/tex] or equivalently [tex]\( 2 \pi r \cdot \frac{n}{360} \)[/tex].
1. Understanding the Circumference:
- The circumference [tex]\( C \)[/tex] of a circle is given by [tex]\( C = \pi d \)[/tex], where [tex]\( d \)[/tex] is the diameter.
- Since the diameter [tex]\( d \)[/tex] is twice the radius [tex]\( r \)[/tex], we can write the circumference as [tex]\( C = 2 \pi r \)[/tex].
2. Dividing the Circle into Sectors:
- If we draw central angles each with a measure of [tex]\( n^\circ \)[/tex], the number of such sectors can be determined as [tex]\( \frac{360^\circ}{n^\circ} \)[/tex].
3. Arc Length of Each Sector:
- The arc length of a sector is the portion of the circumference that corresponds to a single central angle. For a circle divided into [tex]\( \frac{360^\circ}{n^\circ} \)[/tex] sectors, the arc length is the circumference divided by the number of such sectors.
- Therefore, the arc length [tex]\( L \)[/tex] for each sector is [tex]\( \frac{2 \pi r}{\frac{360^\circ}{n^\circ}} = 2 \pi r \cdot \frac{n^\circ}{360^\circ} \)[/tex].
4. Simplifying the Expression:
- The expression for the arc length can be simplified as:
[tex]\[ L = 2 \pi r \cdot \frac{n}{360} \][/tex]
So, we see that the arc length of a sector with a central angle of [tex]\( n^\circ \)[/tex] is [tex]\( 2 \pi r \cdot \frac{n}{360} \)[/tex]. This can also be presented as:
[tex]\[ L = r \pi \cdot \frac{n}{180} \][/tex]
By rechecking the provided options, the best fit to complete the argument is:
A. [tex]\( \frac{\pi n r}{180} \)[/tex].
Hence, each sector's arc length formula translates correctly to [tex]\( \frac{\pi n r}{180} \)[/tex] or equivalently [tex]\( 2 \pi r \cdot \frac{n}{360} \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.