Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's complete the missing reasons step by step.
Given equation: [tex]\( 4(x - 2) = 6x + 18 \)[/tex]
[tex]\[ \begin{array}{|l|l|} \hline \text{Statements} & \text{Reasons} \\ \hline 1. \ 4(x - 2) = 6x + 18 & \text{Given} \\ \hline 2. \ 4x - 8 = 6x + 18 & \text{Distributive property} \\ \hline 3. \ -2x - 8 = 18 & \text{Subtraction property of equality} \\ \hline 4. \ -2x = 26 & \text{Addition property of equality} \\ \hline 5. \ x = -13 & \text{Division property of equality} \\ \hline \end{array} \][/tex]
By following the steps:
- Step 1 (Given): [tex]\( 4(x - 2) = 6x + 18 \)[/tex]
- Step 2 (Distributive property applied): [tex]\( 4(x - 2) \rightarrow 4x - 8 \)[/tex], thus equation becomes [tex]\( 4x - 8 = 6x + 18 \)[/tex]
- Step 3 (Subtraction property of equality): Subtract [tex]\( 6x \)[/tex] from both sides gives [tex]\( 4x - 6x - 8 = 18 \)[/tex] which simplifies to [tex]\( -2x - 8 = 18 \)[/tex]
- Step 4 (Addition property of equality): Add [tex]\( 8 \)[/tex] to both sides to isolate [tex]\( x \)[/tex]-term: [tex]\( -2x - 8 + 8 = 18 + 8 \)[/tex], simplifying to [tex]\( -2x = 26 \)[/tex]
- Step 5 (Division property of equality): Divide both sides by [tex]\( -2 \)[/tex] to solve for [tex]\( x \)[/tex]: [tex]\( \frac{-2x}{-2} = \frac{26}{-2} \)[/tex], simplifying to [tex]\( x = -13 \)[/tex]
Thus, the correct reasons are:
- Step 3: Subtraction property of equality
- Step 5: Division property of equality
So, the correct completion of the missing reasons is the option:
3. subtraction property of equality; 5. division property of equality
Given equation: [tex]\( 4(x - 2) = 6x + 18 \)[/tex]
[tex]\[ \begin{array}{|l|l|} \hline \text{Statements} & \text{Reasons} \\ \hline 1. \ 4(x - 2) = 6x + 18 & \text{Given} \\ \hline 2. \ 4x - 8 = 6x + 18 & \text{Distributive property} \\ \hline 3. \ -2x - 8 = 18 & \text{Subtraction property of equality} \\ \hline 4. \ -2x = 26 & \text{Addition property of equality} \\ \hline 5. \ x = -13 & \text{Division property of equality} \\ \hline \end{array} \][/tex]
By following the steps:
- Step 1 (Given): [tex]\( 4(x - 2) = 6x + 18 \)[/tex]
- Step 2 (Distributive property applied): [tex]\( 4(x - 2) \rightarrow 4x - 8 \)[/tex], thus equation becomes [tex]\( 4x - 8 = 6x + 18 \)[/tex]
- Step 3 (Subtraction property of equality): Subtract [tex]\( 6x \)[/tex] from both sides gives [tex]\( 4x - 6x - 8 = 18 \)[/tex] which simplifies to [tex]\( -2x - 8 = 18 \)[/tex]
- Step 4 (Addition property of equality): Add [tex]\( 8 \)[/tex] to both sides to isolate [tex]\( x \)[/tex]-term: [tex]\( -2x - 8 + 8 = 18 + 8 \)[/tex], simplifying to [tex]\( -2x = 26 \)[/tex]
- Step 5 (Division property of equality): Divide both sides by [tex]\( -2 \)[/tex] to solve for [tex]\( x \)[/tex]: [tex]\( \frac{-2x}{-2} = \frac{26}{-2} \)[/tex], simplifying to [tex]\( x = -13 \)[/tex]
Thus, the correct reasons are:
- Step 3: Subtraction property of equality
- Step 5: Division property of equality
So, the correct completion of the missing reasons is the option:
3. subtraction property of equality; 5. division property of equality
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.