At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Simplify by factoring. Assume that all variables in the radicand represent positive real numbers and that the radicand does not involve negative quantities raised to even powers.

[tex]\[
\sqrt[3]{(x+y)^4}
\][/tex]

[tex]\[
\sqrt[3]{(x+y)^4} = \square
\][/tex]

(Simplify your answer. Type an exact answer, using radicals as needed. Factor completely.)


Sagot :

To simplify the expression [tex]\(\sqrt[3]{(x + y)^4}\)[/tex], follow these steps:

1. Recognize the exponent under the cube root:
The expression under the radical is [tex]\((x + y)^4\)[/tex].

2. Interpret the cube root:
The cube root of a number or expression is equivalent to raising that number or expression to the power of [tex]\(\frac{1}{3}\)[/tex].

Therefore, we can rewrite [tex]\(\sqrt[3]{(x + y)^4}\)[/tex] as:

[tex]\[ \sqrt[3]{(x + y)^4} = ((x + y)^4)^{\frac{1}{3}} \][/tex]

3. Combine the exponents:
Using the property of exponents that [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:

[tex]\[ ((x + y)^4)^{\frac{1}{3}} = (x + y)^{4 \cdot \frac{1}{3}} \][/tex]

4. Simplify the exponent:
Multiply the exponents together:

[tex]\[ (x + y)^{4 \cdot \frac{1}{3}} = (x + y)^{\frac{4}{3}} \][/tex]

Therefore, the simplified form of the given expression is:

[tex]\[ \boxed{(x + y)^{\frac{4}{3}}} \][/tex]