Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the correct probability distribution [tex]\( P_X(X) \)[/tex] for the number of times blue occurs when the spinner is spun twice, follow these steps:
1. Identify the Possible Outcomes:
The possible outcomes when the spinner is spun twice are:
[tex]\[ S = \{RR, RB, BR, BB\} \][/tex]
Here, each outcome represents the result of two spins:
- [tex]\( RR \)[/tex]: Red on both spins
- [tex]\( RB \)[/tex]: Red on the first spin and Blue on the second spin
- [tex]\( BR \)[/tex]: Blue on the first spin and Red on the second spin
- [tex]\( BB \)[/tex]: Blue on both spins
2. Define the Random Variable [tex]\( X \)[/tex]:
Let [tex]\( X \)[/tex] be the number of times blue occurs in two spins.
3. Determine the Values of [tex]\( X \)[/tex]:
The possible values for [tex]\( X \)[/tex] are 0, 1, or 2.
- [tex]\( X = 0 \)[/tex] means no blue outcomes.
- [tex]\( X = 1 \)[/tex] means one blue outcome.
- [tex]\( X = 2 \)[/tex] means two blue outcomes.
4. Count the Outcomes for Each Value of [tex]\( X \)[/tex]:
- [tex]\( X = 0 \)[/tex]: The outcome is [tex]\( RR \)[/tex]. There is 1 such outcome.
- [tex]\( X = 1 \)[/tex]: The outcomes are [tex]\( RB \)[/tex] and [tex]\( BR \)[/tex]. There are 2 such outcomes.
- [tex]\( X = 2 \)[/tex]: The outcome is [tex]\( BB \)[/tex]. There is 1 such outcome.
5. Calculate the Probability for Each Value of [tex]\( X \)[/tex]:
Each outcome is equally likely, and there are 4 possible outcomes in total.
- For [tex]\( X = 0 \)[/tex]:
[tex]\[ P_X(0) = \frac{\text{Number of outcomes with } X = 0}{\text{Total outcomes}} = \frac{1}{4} = 0.25 \][/tex]
- For [tex]\( X = 1 \)[/tex]:
[tex]\[ P_X(1) = \frac{\text{Number of outcomes with } X = 1}{\text{Total outcomes}} = \frac{2}{4} = 0.5 \][/tex]
- For [tex]\( X = 2 \)[/tex]:
[tex]\[ P_X(2) = \frac{\text{Number of outcomes with } X = 2}{\text{Total outcomes}} = \frac{1}{4} = 0.25 \][/tex]
6. Construct the Probability Distribution Table:
Based on the calculations, the probability distribution [tex]\( P_X(X) \)[/tex] is:
[tex]\[ \begin{array}{|c|c|} \hline X & P_X(X) \\ \hline 0 & 0.25 \\ \hline 1 & 0.5 \\ \hline 2 & 0.25 \\ \hline \end{array} \][/tex]
Hence, the correct probability distribution, [tex]\( P_X(X) \)[/tex], is given by the first table:
[tex]\[ \begin{array}{|c|c|} \hline x & P_{X}(x) \\ \hline 0 & 0.25 \\ \hline 1 & 0.5 \\ \hline 2 & 0.25 \\ \hline \end{array} \][/tex]
1. Identify the Possible Outcomes:
The possible outcomes when the spinner is spun twice are:
[tex]\[ S = \{RR, RB, BR, BB\} \][/tex]
Here, each outcome represents the result of two spins:
- [tex]\( RR \)[/tex]: Red on both spins
- [tex]\( RB \)[/tex]: Red on the first spin and Blue on the second spin
- [tex]\( BR \)[/tex]: Blue on the first spin and Red on the second spin
- [tex]\( BB \)[/tex]: Blue on both spins
2. Define the Random Variable [tex]\( X \)[/tex]:
Let [tex]\( X \)[/tex] be the number of times blue occurs in two spins.
3. Determine the Values of [tex]\( X \)[/tex]:
The possible values for [tex]\( X \)[/tex] are 0, 1, or 2.
- [tex]\( X = 0 \)[/tex] means no blue outcomes.
- [tex]\( X = 1 \)[/tex] means one blue outcome.
- [tex]\( X = 2 \)[/tex] means two blue outcomes.
4. Count the Outcomes for Each Value of [tex]\( X \)[/tex]:
- [tex]\( X = 0 \)[/tex]: The outcome is [tex]\( RR \)[/tex]. There is 1 such outcome.
- [tex]\( X = 1 \)[/tex]: The outcomes are [tex]\( RB \)[/tex] and [tex]\( BR \)[/tex]. There are 2 such outcomes.
- [tex]\( X = 2 \)[/tex]: The outcome is [tex]\( BB \)[/tex]. There is 1 such outcome.
5. Calculate the Probability for Each Value of [tex]\( X \)[/tex]:
Each outcome is equally likely, and there are 4 possible outcomes in total.
- For [tex]\( X = 0 \)[/tex]:
[tex]\[ P_X(0) = \frac{\text{Number of outcomes with } X = 0}{\text{Total outcomes}} = \frac{1}{4} = 0.25 \][/tex]
- For [tex]\( X = 1 \)[/tex]:
[tex]\[ P_X(1) = \frac{\text{Number of outcomes with } X = 1}{\text{Total outcomes}} = \frac{2}{4} = 0.5 \][/tex]
- For [tex]\( X = 2 \)[/tex]:
[tex]\[ P_X(2) = \frac{\text{Number of outcomes with } X = 2}{\text{Total outcomes}} = \frac{1}{4} = 0.25 \][/tex]
6. Construct the Probability Distribution Table:
Based on the calculations, the probability distribution [tex]\( P_X(X) \)[/tex] is:
[tex]\[ \begin{array}{|c|c|} \hline X & P_X(X) \\ \hline 0 & 0.25 \\ \hline 1 & 0.5 \\ \hline 2 & 0.25 \\ \hline \end{array} \][/tex]
Hence, the correct probability distribution, [tex]\( P_X(X) \)[/tex], is given by the first table:
[tex]\[ \begin{array}{|c|c|} \hline x & P_{X}(x) \\ \hline 0 & 0.25 \\ \hline 1 & 0.5 \\ \hline 2 & 0.25 \\ \hline \end{array} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.