Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine what the variable [tex]\( x \)[/tex] represents in the equation [tex]\( f(x) = 0.5 + 2x \)[/tex], we need to carefully analyze the given context and the structure of the equation itself.
1. Understanding the Initial Condition:
- On his first run, Sean runs [tex]\(0.5\)[/tex] miles. This initial condition is represented by the constant term [tex]\(0.5\)[/tex] in the equation.
2. Understanding the Increment:
- Sean increases his workout by adding [tex]\(2\)[/tex] miles every month. This indicates that for each month that passes, an additional [tex]\(2\)[/tex] miles are added to his initial [tex]\(0.5\)[/tex] miles. This increment is represented by the coefficient [tex]\(2\)[/tex] times the variable [tex]\(x\)[/tex].
3. Structure of the Equation:
- The equation is [tex]\( f(x) = 0.5 + 2x \)[/tex], where [tex]\(f(x)\)[/tex] represents the total number of miles Sean runs after a certain number of months.
4. Analyzing the Variable [tex]\( x \)[/tex]:
- The variable [tex]\(x\)[/tex] scales the increment. Considering he adds [tex]\(2\)[/tex] miles every month, [tex]\(x\)[/tex] must represent the number of months he has been running. For example, if [tex]\(x = 1\)[/tex], then he has been running for 1 month and the distance he runs becomes [tex]\(f(1) = 0.5 + 2 \times 1 = 2.5\)[/tex] miles; for [tex]\(x = 2\)[/tex], it becomes [tex]\(f(2) = 0.5 + 2 \times 2 = 4.5\)[/tex] miles, and so on.
Based on this analysis, the variable [tex]\(x\)[/tex] in the equation [tex]\( f(x) = 0.5 + 2x \)[/tex] represents the number of months he runs.
Thus, the correct answer is:
months he runs.
1. Understanding the Initial Condition:
- On his first run, Sean runs [tex]\(0.5\)[/tex] miles. This initial condition is represented by the constant term [tex]\(0.5\)[/tex] in the equation.
2. Understanding the Increment:
- Sean increases his workout by adding [tex]\(2\)[/tex] miles every month. This indicates that for each month that passes, an additional [tex]\(2\)[/tex] miles are added to his initial [tex]\(0.5\)[/tex] miles. This increment is represented by the coefficient [tex]\(2\)[/tex] times the variable [tex]\(x\)[/tex].
3. Structure of the Equation:
- The equation is [tex]\( f(x) = 0.5 + 2x \)[/tex], where [tex]\(f(x)\)[/tex] represents the total number of miles Sean runs after a certain number of months.
4. Analyzing the Variable [tex]\( x \)[/tex]:
- The variable [tex]\(x\)[/tex] scales the increment. Considering he adds [tex]\(2\)[/tex] miles every month, [tex]\(x\)[/tex] must represent the number of months he has been running. For example, if [tex]\(x = 1\)[/tex], then he has been running for 1 month and the distance he runs becomes [tex]\(f(1) = 0.5 + 2 \times 1 = 2.5\)[/tex] miles; for [tex]\(x = 2\)[/tex], it becomes [tex]\(f(2) = 0.5 + 2 \times 2 = 4.5\)[/tex] miles, and so on.
Based on this analysis, the variable [tex]\(x\)[/tex] in the equation [tex]\( f(x) = 0.5 + 2x \)[/tex] represents the number of months he runs.
Thus, the correct answer is:
months he runs.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.