Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve for the right-hand limit of the function [tex]\( f(x) = \frac{x^2 + 2x - 3}{x - 1} \)[/tex] as [tex]\( x \)[/tex] approaches 2, let's go through the steps methodically.
1. First, understand the function:
The function given is [tex]\( f(x) = \frac{x^2 + 2x - 3}{x - 1} \)[/tex].
2. Simplify the function if possible:
We notice that the numerator [tex]\((x^2 + 2x - 3)\)[/tex] can be factored. Let's factor it:
[tex]\[ x^2 + 2x - 3 = (x + 3)(x - 1) \][/tex]
So the function becomes:
[tex]\[ f(x) = \frac{(x + 3)(x - 1)}{x - 1} \][/tex]
For [tex]\( x \neq 1 \)[/tex], we can cancel the [tex]\((x - 1)\)[/tex] terms in the numerator and the denominator:
[tex]\[ f(x) = x + 3 \quad \text{for} \quad x \neq 1 \][/tex]
3. Determine the limit:
Now, we need to find the right-hand limit as [tex]\( x \)[/tex] approaches 2 of the simplified function [tex]\( f(x) = x + 3 \)[/tex].
[tex]\[ \lim_{{x \to 2^+}} (x + 3) \][/tex]
4. Evaluate the limit:
Plug in [tex]\( x = 2 \)[/tex] into the simplified function:
[tex]\[ \lim_{{x \to 2^+}} (x + 3) = 2 + 3 = 5 \][/tex]
Thus, the right-hand limit of the function [tex]\( f(x) = \frac{x^2 + 2x - 3}{x - 1} \)[/tex] as [tex]\( x \)[/tex] approaches 2 is [tex]\( 5 \)[/tex].
So, the correct answer is:
D. 5
1. First, understand the function:
The function given is [tex]\( f(x) = \frac{x^2 + 2x - 3}{x - 1} \)[/tex].
2. Simplify the function if possible:
We notice that the numerator [tex]\((x^2 + 2x - 3)\)[/tex] can be factored. Let's factor it:
[tex]\[ x^2 + 2x - 3 = (x + 3)(x - 1) \][/tex]
So the function becomes:
[tex]\[ f(x) = \frac{(x + 3)(x - 1)}{x - 1} \][/tex]
For [tex]\( x \neq 1 \)[/tex], we can cancel the [tex]\((x - 1)\)[/tex] terms in the numerator and the denominator:
[tex]\[ f(x) = x + 3 \quad \text{for} \quad x \neq 1 \][/tex]
3. Determine the limit:
Now, we need to find the right-hand limit as [tex]\( x \)[/tex] approaches 2 of the simplified function [tex]\( f(x) = x + 3 \)[/tex].
[tex]\[ \lim_{{x \to 2^+}} (x + 3) \][/tex]
4. Evaluate the limit:
Plug in [tex]\( x = 2 \)[/tex] into the simplified function:
[tex]\[ \lim_{{x \to 2^+}} (x + 3) = 2 + 3 = 5 \][/tex]
Thus, the right-hand limit of the function [tex]\( f(x) = \frac{x^2 + 2x - 3}{x - 1} \)[/tex] as [tex]\( x \)[/tex] approaches 2 is [tex]\( 5 \)[/tex].
So, the correct answer is:
D. 5
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.