Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To evaluate the expression [tex]\(\log_{19} 13\)[/tex] using either common logarithms (base 10) or natural logarithms (base [tex]\(e\)[/tex]), we can utilize the change-of-base formula.
The change-of-base formula states that for any positive numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] (where [tex]\(a \neq 1\)[/tex] and [tex]\(b \neq 1\)[/tex]):
[tex]$ \log_a b = \frac{\log_c b}{\log_c a} $[/tex]
In this case, we want to rewrite [tex]\(\log_{19} 13\)[/tex] using either common logarithms (base 10) or natural logarithms (base [tex]\(e\)[/tex]).
Let's rewrite it using common logarithms (base 10):
[tex]$ \log_{19} 13 = \frac{\log_{10} 13}{\log_{10} 19} $[/tex]
Alternatively, we can rewrite it using natural logarithms (base [tex]\(e\)[/tex]):
[tex]$ \log_{19} 13 = \frac{\ln 13}{\ln 19} $[/tex]
So, the expression [tex]\(\log_{19} 13\)[/tex] can be rewritten using the change-of-base property as:
[tex]$ \log_{19} 13 = \frac{\log 13}{\log 19} $[/tex]
or
[tex]$ \log_{19} 13 = \frac{\ln 13}{\ln 19} $[/tex]
Choose either form based on your preference for common logarithms or natural logarithms. Both forms are correct and equivalent.
The change-of-base formula states that for any positive numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] (where [tex]\(a \neq 1\)[/tex] and [tex]\(b \neq 1\)[/tex]):
[tex]$ \log_a b = \frac{\log_c b}{\log_c a} $[/tex]
In this case, we want to rewrite [tex]\(\log_{19} 13\)[/tex] using either common logarithms (base 10) or natural logarithms (base [tex]\(e\)[/tex]).
Let's rewrite it using common logarithms (base 10):
[tex]$ \log_{19} 13 = \frac{\log_{10} 13}{\log_{10} 19} $[/tex]
Alternatively, we can rewrite it using natural logarithms (base [tex]\(e\)[/tex]):
[tex]$ \log_{19} 13 = \frac{\ln 13}{\ln 19} $[/tex]
So, the expression [tex]\(\log_{19} 13\)[/tex] can be rewritten using the change-of-base property as:
[tex]$ \log_{19} 13 = \frac{\log 13}{\log 19} $[/tex]
or
[tex]$ \log_{19} 13 = \frac{\ln 13}{\ln 19} $[/tex]
Choose either form based on your preference for common logarithms or natural logarithms. Both forms are correct and equivalent.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.