Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which function represents a polynomial with zeros at [tex]\(-3\)[/tex], [tex]\(-1\)[/tex], [tex]\(0\)[/tex], and [tex]\(6\)[/tex], we need to check which polynomial equations have these specific roots.
1. Analyzing Option A: [tex]\(y = (x-6)(x+1)(x+3)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = (x-6)(x+1)(x+3) \][/tex]
- The roots are the values of [tex]\(x\)[/tex] that make each factor equal to zero.
- The roots here are found by solving:
[tex]\[ x - 6 = 0 \implies x = 6 \\ x + 1 = 0 \implies x = -1 \\ x + 3 = 0 \implies x = -3 \][/tex]
- This function has zeros at [tex]\(6\)[/tex], [tex]\(-1\)[/tex], and [tex]\(-3\)[/tex], but it's missing [tex]\(0\)[/tex].
2. Analyzing Option B: [tex]\(y = x(x-3)(x-1)(x+6)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = x(x-3)(x-1)(x+6) \][/tex]
- The roots are found by solving:
[tex]\[ x = 0 \\ x-3 = 0 \implies x = 3 \\ x-1 = 0 \implies x = 1 \\ x + 6 = 0 \implies x = -6 \][/tex]
- This function has zeros at [tex]\(0\)[/tex], [tex]\(3\)[/tex], [tex]\(1\)[/tex], and [tex]\(-6\)[/tex]. These do not match [tex]\(-3\)[/tex], [tex]\(-1\)[/tex], [tex]\(0\)[/tex], and [tex]\(6\)[/tex].
3. Analyzing Option C: [tex]\(y = x(x-6)(x+1)(x+3)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = x(x-6)(x+1)(x+3) \][/tex]
- The roots are found by solving:
[tex]\[ x = 0 \\ x - 6 = 0 \implies x = 6 \\ x + 1 = 0 \implies x = -1 \\ x + 3 = 0 \implies x = -3 \][/tex]
- This function has zeros at [tex]\(0\)[/tex], [tex]\(6\)[/tex], [tex]\(-1\)[/tex], and [tex]\(-3\)[/tex], which correctly match the given zeros.
4. Analyzing Option D: [tex]\(y = (x-3)(x-1)(x+6)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = (x-3)(x-1)(x+6) \][/tex]
- The roots are found by solving:
[tex]\[ x-3 = 0 \implies x = 3 \\ x-1 = 0 \implies x = 1 \\ x + 6 = 0 \implies x = -6 \][/tex]
- This function has zeros at [tex]\(3\)[/tex], [tex]\(1\)[/tex], and [tex]\(-6\)[/tex], but it does not include [tex]\(0\)[/tex], [tex]\(-3\)[/tex], and [tex]\(-1\)[/tex].
Upon reviewing each option, we conclude that the correct polynomial function with zeros at [tex]\(-3\)[/tex], [tex]\(-1\)[/tex], [tex]\(0\)[/tex], and [tex]\(6\)[/tex] is:
Option C: [tex]\(y = x(x-6)(x+1)(x+3)\)[/tex]
1. Analyzing Option A: [tex]\(y = (x-6)(x+1)(x+3)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = (x-6)(x+1)(x+3) \][/tex]
- The roots are the values of [tex]\(x\)[/tex] that make each factor equal to zero.
- The roots here are found by solving:
[tex]\[ x - 6 = 0 \implies x = 6 \\ x + 1 = 0 \implies x = -1 \\ x + 3 = 0 \implies x = -3 \][/tex]
- This function has zeros at [tex]\(6\)[/tex], [tex]\(-1\)[/tex], and [tex]\(-3\)[/tex], but it's missing [tex]\(0\)[/tex].
2. Analyzing Option B: [tex]\(y = x(x-3)(x-1)(x+6)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = x(x-3)(x-1)(x+6) \][/tex]
- The roots are found by solving:
[tex]\[ x = 0 \\ x-3 = 0 \implies x = 3 \\ x-1 = 0 \implies x = 1 \\ x + 6 = 0 \implies x = -6 \][/tex]
- This function has zeros at [tex]\(0\)[/tex], [tex]\(3\)[/tex], [tex]\(1\)[/tex], and [tex]\(-6\)[/tex]. These do not match [tex]\(-3\)[/tex], [tex]\(-1\)[/tex], [tex]\(0\)[/tex], and [tex]\(6\)[/tex].
3. Analyzing Option C: [tex]\(y = x(x-6)(x+1)(x+3)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = x(x-6)(x+1)(x+3) \][/tex]
- The roots are found by solving:
[tex]\[ x = 0 \\ x - 6 = 0 \implies x = 6 \\ x + 1 = 0 \implies x = -1 \\ x + 3 = 0 \implies x = -3 \][/tex]
- This function has zeros at [tex]\(0\)[/tex], [tex]\(6\)[/tex], [tex]\(-1\)[/tex], and [tex]\(-3\)[/tex], which correctly match the given zeros.
4. Analyzing Option D: [tex]\(y = (x-3)(x-1)(x+6)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = (x-3)(x-1)(x+6) \][/tex]
- The roots are found by solving:
[tex]\[ x-3 = 0 \implies x = 3 \\ x-1 = 0 \implies x = 1 \\ x + 6 = 0 \implies x = -6 \][/tex]
- This function has zeros at [tex]\(3\)[/tex], [tex]\(1\)[/tex], and [tex]\(-6\)[/tex], but it does not include [tex]\(0\)[/tex], [tex]\(-3\)[/tex], and [tex]\(-1\)[/tex].
Upon reviewing each option, we conclude that the correct polynomial function with zeros at [tex]\(-3\)[/tex], [tex]\(-1\)[/tex], [tex]\(0\)[/tex], and [tex]\(6\)[/tex] is:
Option C: [tex]\(y = x(x-6)(x+1)(x+3)\)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.