Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find [tex]\(\frac{d}{dt}[u(t) \cdot v(t)]\)[/tex] where [tex]\(u(t) = e^{8t} \mathbf{i} + e^{-8t} \mathbf{j}\)[/tex] and [tex]\(v(t) = t \mathbf{i} - 9 t^5 \mathbf{j}\)[/tex], we need to follow these steps:
1. Compute the dot product of [tex]\(u(t)\)[/tex] and [tex]\(v(t)\)[/tex].
2. Differentiate the dot product with respect to [tex]\(t\)[/tex].
### 1. Compute the dot product [tex]\(u(t) \cdot v(t)\)[/tex]
Given [tex]\(u(t) = e^{8t} \mathbf{i} + e^{-8t} \mathbf{j}\)[/tex] and [tex]\(v(t) = t \mathbf{i} - 9 t^5 \mathbf{j}\)[/tex], we compute the dot product by multiplying the corresponding components of the vectors and adding the results.
The dot product is given by:
[tex]\[ u(t) \cdot v(t) = (e^{8t} \mathbf{i} + e^{-8t} \mathbf{j}) \cdot (t \mathbf{i} - 9 t^5 \mathbf{j}) \][/tex]
Expanding this, we have:
[tex]\[ u(t) \cdot v(t) = (e^{8t} \mathbf{i}) \cdot (t \mathbf{i}) + (e^{8t} \mathbf{i}) \cdot (-9 t^5 \mathbf{j}) + (e^{-8t} \mathbf{j}) \cdot (t \mathbf{i}) + (e^{-8t} \mathbf{j}) \cdot (-9 t^5 \mathbf{j}) \][/tex]
The perpendicular components [tex]\(\mathbf{i} \cdot \mathbf{j}\)[/tex] and [tex]\(\mathbf{j} \cdot \mathbf{i}\)[/tex] are zero:
[tex]\[ \mathbf{i} \cdot \mathbf{j} = 0 \quad \text{and} \quad \mathbf{j} \cdot \mathbf{i} = 0 \][/tex]
Thus, the terms involving [tex]\((e^{8t} \mathbf{i}) \cdot (-9 t^5 \mathbf{j})\)[/tex] and [tex]\((e^{-8t} \mathbf{j}) \cdot (t \mathbf{i})\)[/tex] drop out:
[tex]\[ u(t) \cdot v(t) = (e^{8t} \mathbf{i}) \cdot (t \mathbf{i}) + (e^{-8t} \mathbf{j}) \cdot (-9 t^5 \mathbf{j}) \][/tex]
Now compute the remaining terms:
[tex]\[ (e^{8t} \mathbf{i}) \cdot (t \mathbf{i}) = e^{8t} \cdot t = t e^{8t} \][/tex]
[tex]\[ (e^{-8t} \mathbf{j}) \cdot (-9 t^5 \mathbf{j}) = e^{-8t} \cdot (-9 t^5) = -9 t^5 e^{-8t} \][/tex]
Combining these, we get:
[tex]\[ u(t) \cdot v(t) = t e^{8t} - 9 t^5 e^{-8t} \][/tex]
### 2. Differentiate the dot product with respect to [tex]\(t\)[/tex]
Now we need to find [tex]\(\frac{d}{dt} \left( t e^{8t} - 9 t^5 e^{-8t} \right)\)[/tex].
Using the product rule [tex]\(\frac{d}{dt} (f(t) g(t)) = f'(t) g(t) + f(t) g'(t)\)[/tex]:
#### Differentiate [tex]\(t e^{8t}\)[/tex]:
Let [tex]\(f(t) = t\)[/tex] and [tex]\(g(t) = e^{8t}\)[/tex].
[tex]\[ f'(t) = 1 \][/tex]
[tex]\[ g'(t) = 8 e^{8t} \][/tex]
So,
[tex]\[ \frac{d}{dt}(t e^{8t}) = 1 \cdot e^{8t} + t \cdot 8 e^{8t} = e^{8t} + 8 t e^{8t} \][/tex]
#### Differentiate [tex]\(-9 t^5 e^{-8t}\)[/tex]:
Let [tex]\(-9 t^5 = f(t)\)[/tex] and [tex]\(e^{-8t} = g(t)\)[/tex].
[tex]\[ f'(t) = -45 t^4 \][/tex]
[tex]\[ g'(t) = -8 e^{-8t} \][/tex]
So,
[tex]\[ \frac{d}{dt}(-9 t^5 e^{-8t}) = (-45 t^4) e^{-8t} + (-9 t^5)(-8 e^{-8t}) = -45 t^4 e^{-8t} + 72 t^5 e^{-8t} \][/tex]
Combining these differentiation results, we have:
[tex]\[ \frac{d}{dt}[u(t) \cdot v(t)] = \left(e^{8t} + 8 t e^{8t}\right) + \left(-45 t^4 e^{-8t} + 72 t^5 e^{-8t}\right) \][/tex]
Simplifying:
[tex]\[ = e^{8t} + 8 t e^{8t} - 45 t^4 e^{-8t} + 72 t^5 e^{-8t} \][/tex]
Thus, the derivative [tex]\(\frac{d}{dt}[u(t) \cdot v(t)]\)[/tex] is:
[tex]\[ \boxed{e^{8t} + 8 t e^{8t} - 45 t^4 e^{-8t} + 72 t^5 e^{-8t}} \][/tex]
1. Compute the dot product of [tex]\(u(t)\)[/tex] and [tex]\(v(t)\)[/tex].
2. Differentiate the dot product with respect to [tex]\(t\)[/tex].
### 1. Compute the dot product [tex]\(u(t) \cdot v(t)\)[/tex]
Given [tex]\(u(t) = e^{8t} \mathbf{i} + e^{-8t} \mathbf{j}\)[/tex] and [tex]\(v(t) = t \mathbf{i} - 9 t^5 \mathbf{j}\)[/tex], we compute the dot product by multiplying the corresponding components of the vectors and adding the results.
The dot product is given by:
[tex]\[ u(t) \cdot v(t) = (e^{8t} \mathbf{i} + e^{-8t} \mathbf{j}) \cdot (t \mathbf{i} - 9 t^5 \mathbf{j}) \][/tex]
Expanding this, we have:
[tex]\[ u(t) \cdot v(t) = (e^{8t} \mathbf{i}) \cdot (t \mathbf{i}) + (e^{8t} \mathbf{i}) \cdot (-9 t^5 \mathbf{j}) + (e^{-8t} \mathbf{j}) \cdot (t \mathbf{i}) + (e^{-8t} \mathbf{j}) \cdot (-9 t^5 \mathbf{j}) \][/tex]
The perpendicular components [tex]\(\mathbf{i} \cdot \mathbf{j}\)[/tex] and [tex]\(\mathbf{j} \cdot \mathbf{i}\)[/tex] are zero:
[tex]\[ \mathbf{i} \cdot \mathbf{j} = 0 \quad \text{and} \quad \mathbf{j} \cdot \mathbf{i} = 0 \][/tex]
Thus, the terms involving [tex]\((e^{8t} \mathbf{i}) \cdot (-9 t^5 \mathbf{j})\)[/tex] and [tex]\((e^{-8t} \mathbf{j}) \cdot (t \mathbf{i})\)[/tex] drop out:
[tex]\[ u(t) \cdot v(t) = (e^{8t} \mathbf{i}) \cdot (t \mathbf{i}) + (e^{-8t} \mathbf{j}) \cdot (-9 t^5 \mathbf{j}) \][/tex]
Now compute the remaining terms:
[tex]\[ (e^{8t} \mathbf{i}) \cdot (t \mathbf{i}) = e^{8t} \cdot t = t e^{8t} \][/tex]
[tex]\[ (e^{-8t} \mathbf{j}) \cdot (-9 t^5 \mathbf{j}) = e^{-8t} \cdot (-9 t^5) = -9 t^5 e^{-8t} \][/tex]
Combining these, we get:
[tex]\[ u(t) \cdot v(t) = t e^{8t} - 9 t^5 e^{-8t} \][/tex]
### 2. Differentiate the dot product with respect to [tex]\(t\)[/tex]
Now we need to find [tex]\(\frac{d}{dt} \left( t e^{8t} - 9 t^5 e^{-8t} \right)\)[/tex].
Using the product rule [tex]\(\frac{d}{dt} (f(t) g(t)) = f'(t) g(t) + f(t) g'(t)\)[/tex]:
#### Differentiate [tex]\(t e^{8t}\)[/tex]:
Let [tex]\(f(t) = t\)[/tex] and [tex]\(g(t) = e^{8t}\)[/tex].
[tex]\[ f'(t) = 1 \][/tex]
[tex]\[ g'(t) = 8 e^{8t} \][/tex]
So,
[tex]\[ \frac{d}{dt}(t e^{8t}) = 1 \cdot e^{8t} + t \cdot 8 e^{8t} = e^{8t} + 8 t e^{8t} \][/tex]
#### Differentiate [tex]\(-9 t^5 e^{-8t}\)[/tex]:
Let [tex]\(-9 t^5 = f(t)\)[/tex] and [tex]\(e^{-8t} = g(t)\)[/tex].
[tex]\[ f'(t) = -45 t^4 \][/tex]
[tex]\[ g'(t) = -8 e^{-8t} \][/tex]
So,
[tex]\[ \frac{d}{dt}(-9 t^5 e^{-8t}) = (-45 t^4) e^{-8t} + (-9 t^5)(-8 e^{-8t}) = -45 t^4 e^{-8t} + 72 t^5 e^{-8t} \][/tex]
Combining these differentiation results, we have:
[tex]\[ \frac{d}{dt}[u(t) \cdot v(t)] = \left(e^{8t} + 8 t e^{8t}\right) + \left(-45 t^4 e^{-8t} + 72 t^5 e^{-8t}\right) \][/tex]
Simplifying:
[tex]\[ = e^{8t} + 8 t e^{8t} - 45 t^4 e^{-8t} + 72 t^5 e^{-8t} \][/tex]
Thus, the derivative [tex]\(\frac{d}{dt}[u(t) \cdot v(t)]\)[/tex] is:
[tex]\[ \boxed{e^{8t} + 8 t e^{8t} - 45 t^4 e^{-8t} + 72 t^5 e^{-8t}} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.