Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's simplify the expression [tex]\( 5 x \cdot \frac{1}{x^{-7}} \cdot x^{-2} \)[/tex] step-by-step.
1. Initial Expression:
[tex]\[ 5 x \cdot \frac{1}{x^{-7}} \cdot x^{-2} \][/tex]
2. Handling the Fraction:
Recall that [tex]\(\frac{1}{x^{-7}}\)[/tex] can be rewritten using the property of exponents [tex]\(\frac{1}{x^{-a}} = x^a\)[/tex]. Therefore,
[tex]\[ \frac{1}{x^{-7}} = x^{7} \][/tex]
3. Substitute and Combine:
Now substitute [tex]\(x^7\)[/tex] back into the original expression:
[tex]\[ 5 x \cdot x^7 \cdot x^{-2} \][/tex]
4. Combining Exponents:
Use the property of exponents [tex]\(x^a \cdot x^b = x^{a+b}\)[/tex]:
- Combine the exponents [tex]\(1\)[/tex] (from [tex]\(5x\)[/tex]), [tex]\(7\)[/tex], and [tex]\(-2\)[/tex]:
[tex]\[ 5 x^{1 + 7 - 2} \][/tex]
Simplifying the exponent:
[tex]\[ 5 x^{6} \][/tex]
5. Final Simplified Expression:
[tex]\[ 5 x^{6} \][/tex]
Therefore, the simplified expression is [tex]\(5 x^6\)[/tex].
1. Initial Expression:
[tex]\[ 5 x \cdot \frac{1}{x^{-7}} \cdot x^{-2} \][/tex]
2. Handling the Fraction:
Recall that [tex]\(\frac{1}{x^{-7}}\)[/tex] can be rewritten using the property of exponents [tex]\(\frac{1}{x^{-a}} = x^a\)[/tex]. Therefore,
[tex]\[ \frac{1}{x^{-7}} = x^{7} \][/tex]
3. Substitute and Combine:
Now substitute [tex]\(x^7\)[/tex] back into the original expression:
[tex]\[ 5 x \cdot x^7 \cdot x^{-2} \][/tex]
4. Combining Exponents:
Use the property of exponents [tex]\(x^a \cdot x^b = x^{a+b}\)[/tex]:
- Combine the exponents [tex]\(1\)[/tex] (from [tex]\(5x\)[/tex]), [tex]\(7\)[/tex], and [tex]\(-2\)[/tex]:
[tex]\[ 5 x^{1 + 7 - 2} \][/tex]
Simplifying the exponent:
[tex]\[ 5 x^{6} \][/tex]
5. Final Simplified Expression:
[tex]\[ 5 x^{6} \][/tex]
Therefore, the simplified expression is [tex]\(5 x^6\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.