Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the arc length [tex]\( s \)[/tex] of the vector function [tex]\(\mathbf{r}(t) = 2 \sin(2t) \mathbf{i} - 5 \cos(t) \mathbf{j}\)[/tex] from [tex]\(t = 0\)[/tex] to [tex]\(t = \frac{\pi}{2}\)[/tex], we can follow these steps:
1. Find the derivative of [tex]\(\mathbf{r}(t)\)[/tex] with respect to [tex]\(t\)[/tex]:
[tex]\[ \mathbf{r}(t) = \begin{pmatrix} 2 \sin(2t) \\ -5 \cos(t) \end{pmatrix} \][/tex]
To find [tex]\(\mathbf{r}'(t)\)[/tex]:
[tex]\[ \mathbf{r}'(t) = \begin{pmatrix} 2 \frac{d}{dt} \sin(2t) \\ -5 \frac{d}{dt} \cos(t) \end{pmatrix} \][/tex]
Using the chain rule and standard derivatives:
[tex]\[ \frac{d}{dt} \sin(2t) = 2 \cos(2t) \][/tex]
And:
[tex]\[ \frac{d}{dt} \cos(t) = - \sin(t) \][/tex]
Therefore:
[tex]\[ \mathbf{r}'(t) = \begin{pmatrix} 2 \cdot 2 \cos(2t) \\ -5 \cdot (-\sin(t)) \end{pmatrix} = \begin{pmatrix} 4 \cos(2t) \\ 5 \sin(t) \end{pmatrix} \][/tex]
2. Find the magnitude of [tex]\(\mathbf{r}'(t)\)[/tex]:
The magnitude of [tex]\(\mathbf{r}'(t)\)[/tex] is given by:
[tex]\[ \|\mathbf{r}'(t)\| = \sqrt{\left(4 \cos(2t)\right)^2 + \left(5 \sin(t)\right)^2} \][/tex]
Simplifying inside the square root:
[tex]\[ \|\mathbf{r}'(t)\| = \sqrt{16 \cos^2(2t) + 25 \sin^2(t)} \][/tex]
3. Set up the integral for the arc length [tex]\(s\)[/tex]:
The arc length [tex]\(s\)[/tex] is the integral of the magnitude of [tex]\(\mathbf{r}'(t)\)[/tex] with respect to [tex]\(t\)[/tex] from [tex]\(t = 0\)[/tex] to [tex]\(t = \frac{\pi}{2}\)[/tex]:
[tex]\[ s = \int_{0}^{\frac{\pi}{2}} \|\mathbf{r}'(t)\| \, dt = \int_{0}^{\frac{\pi}{2}} \sqrt{16 \cos^2(2t) + 25 \sin^2(t)} \, dt \][/tex]
Hence, the solution gives us the derivative of the vector function, the magnitude of the derivative, and the integral representing the arc length. Specifically, the results are:
1. The derivative of [tex]\(\mathbf{r}(t)\)[/tex]:
[tex]\[ \mathbf{r}'(t) = \begin{pmatrix} 4 \cos(2t) \\ 5 \sin(t) \end{pmatrix} \][/tex]
2. The magnitude of [tex]\(\mathbf{r}'(t)\)[/tex]:
[tex]\[ \sqrt{16 \cos^2(2t) + 25 \sin^2(t)} \][/tex]
3. The integral representing the arc length [tex]\(s\)[/tex]:
[tex]\[ \int_{0}^{\frac{\pi}{2}} \sqrt{16 \cos^2(2t) + 25 \sin^2(t)} \, dt \][/tex]
1. Find the derivative of [tex]\(\mathbf{r}(t)\)[/tex] with respect to [tex]\(t\)[/tex]:
[tex]\[ \mathbf{r}(t) = \begin{pmatrix} 2 \sin(2t) \\ -5 \cos(t) \end{pmatrix} \][/tex]
To find [tex]\(\mathbf{r}'(t)\)[/tex]:
[tex]\[ \mathbf{r}'(t) = \begin{pmatrix} 2 \frac{d}{dt} \sin(2t) \\ -5 \frac{d}{dt} \cos(t) \end{pmatrix} \][/tex]
Using the chain rule and standard derivatives:
[tex]\[ \frac{d}{dt} \sin(2t) = 2 \cos(2t) \][/tex]
And:
[tex]\[ \frac{d}{dt} \cos(t) = - \sin(t) \][/tex]
Therefore:
[tex]\[ \mathbf{r}'(t) = \begin{pmatrix} 2 \cdot 2 \cos(2t) \\ -5 \cdot (-\sin(t)) \end{pmatrix} = \begin{pmatrix} 4 \cos(2t) \\ 5 \sin(t) \end{pmatrix} \][/tex]
2. Find the magnitude of [tex]\(\mathbf{r}'(t)\)[/tex]:
The magnitude of [tex]\(\mathbf{r}'(t)\)[/tex] is given by:
[tex]\[ \|\mathbf{r}'(t)\| = \sqrt{\left(4 \cos(2t)\right)^2 + \left(5 \sin(t)\right)^2} \][/tex]
Simplifying inside the square root:
[tex]\[ \|\mathbf{r}'(t)\| = \sqrt{16 \cos^2(2t) + 25 \sin^2(t)} \][/tex]
3. Set up the integral for the arc length [tex]\(s\)[/tex]:
The arc length [tex]\(s\)[/tex] is the integral of the magnitude of [tex]\(\mathbf{r}'(t)\)[/tex] with respect to [tex]\(t\)[/tex] from [tex]\(t = 0\)[/tex] to [tex]\(t = \frac{\pi}{2}\)[/tex]:
[tex]\[ s = \int_{0}^{\frac{\pi}{2}} \|\mathbf{r}'(t)\| \, dt = \int_{0}^{\frac{\pi}{2}} \sqrt{16 \cos^2(2t) + 25 \sin^2(t)} \, dt \][/tex]
Hence, the solution gives us the derivative of the vector function, the magnitude of the derivative, and the integral representing the arc length. Specifically, the results are:
1. The derivative of [tex]\(\mathbf{r}(t)\)[/tex]:
[tex]\[ \mathbf{r}'(t) = \begin{pmatrix} 4 \cos(2t) \\ 5 \sin(t) \end{pmatrix} \][/tex]
2. The magnitude of [tex]\(\mathbf{r}'(t)\)[/tex]:
[tex]\[ \sqrt{16 \cos^2(2t) + 25 \sin^2(t)} \][/tex]
3. The integral representing the arc length [tex]\(s\)[/tex]:
[tex]\[ \int_{0}^{\frac{\pi}{2}} \sqrt{16 \cos^2(2t) + 25 \sin^2(t)} \, dt \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.