Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's solve the problem step-by-step to determine how we can calculate the mass of an object given its acceleration [tex]\(a\)[/tex] and the force [tex]\(F\)[/tex] applied to it.
### Step-by-Step Solution
1. Concept Introduction:
- In physics, Newton's Second Law of Motion states that the force acting on an object is equal to the mass of the object multiplied by its acceleration. This can be formulated as:
[tex]\[ F = m \cdot a \][/tex]
where:
- [tex]\( F \)[/tex] is the force,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( a \)[/tex] is the acceleration.
2. Isolate the Mass (m):
- To find the mass ([tex]\( m \)[/tex]), we need to rearrange the formula to solve for [tex]\( m \)[/tex]. Given [tex]\( F = m \cdot a \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
- Thus, the mass can be calculated by dividing the force by the acceleration.
3. Validation:
- Let's validate this rearrangement by considering the units.
- Force ([tex]\( F \)[/tex]) is measured in Newtons (N).
- Acceleration ([tex]\( a \)[/tex]) is measured in meters per second squared (m/s²).
- Mass ([tex]\( m \)[/tex]) is measured in kilograms (kg).
- The unit conversion supports the formula [tex]\( m = \frac{F}{a} \)[/tex]:
[tex]\[ \text{N} = \text{kg} \cdot \text{m/s}^2 \][/tex]
[tex]\[ \text{kg} = \frac{\text{N}}{\text{m/s}^2} \][/tex]
4. Conclusion:
- Based on the derivation and unit analysis, the correct formula to calculate the mass ([tex]\( m \)[/tex]) given the force ([tex]\( F \)[/tex]) and acceleration ([tex]\( a \)[/tex]) is:
[tex]\[ m = \frac{F}{a} \][/tex]
Therefore, the correct answer is:
A. [tex]\( m = \frac{F}{a} \)[/tex]
### Step-by-Step Solution
1. Concept Introduction:
- In physics, Newton's Second Law of Motion states that the force acting on an object is equal to the mass of the object multiplied by its acceleration. This can be formulated as:
[tex]\[ F = m \cdot a \][/tex]
where:
- [tex]\( F \)[/tex] is the force,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( a \)[/tex] is the acceleration.
2. Isolate the Mass (m):
- To find the mass ([tex]\( m \)[/tex]), we need to rearrange the formula to solve for [tex]\( m \)[/tex]. Given [tex]\( F = m \cdot a \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
- Thus, the mass can be calculated by dividing the force by the acceleration.
3. Validation:
- Let's validate this rearrangement by considering the units.
- Force ([tex]\( F \)[/tex]) is measured in Newtons (N).
- Acceleration ([tex]\( a \)[/tex]) is measured in meters per second squared (m/s²).
- Mass ([tex]\( m \)[/tex]) is measured in kilograms (kg).
- The unit conversion supports the formula [tex]\( m = \frac{F}{a} \)[/tex]:
[tex]\[ \text{N} = \text{kg} \cdot \text{m/s}^2 \][/tex]
[tex]\[ \text{kg} = \frac{\text{N}}{\text{m/s}^2} \][/tex]
4. Conclusion:
- Based on the derivation and unit analysis, the correct formula to calculate the mass ([tex]\( m \)[/tex]) given the force ([tex]\( F \)[/tex]) and acceleration ([tex]\( a \)[/tex]) is:
[tex]\[ m = \frac{F}{a} \][/tex]
Therefore, the correct answer is:
A. [tex]\( m = \frac{F}{a} \)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.